968 resultados para Temperature of animals.
Resumo:
Thermodynamic analysis of a non-polluting process for the effective treatment of lean multimetallic sulphide ores is presented. The sulphide ore is roasted with sodium chloride in air. Metal sulphides are converted to chlorides that can be separated from the unaffected gangue material. At a temperature of 1100 K the chlorides are present both in gaseous and in condensed states. Volatile chlorides can be easily removed and subsequently condensed. The chlorides present in the condensed state can be leached to separate them from the gangue. The sulphur is trapped as Na2SO4 and thus SO2 emission is minimized. Ellingham diagrams are used to compare data for a large number of elements. The major thermodynamic driving force is provided by the higher stability of Na2SO4 relative to NaCl.
Resumo:
A solid-state miscibility gap in the pseudo-binary system BaO-SrO is delineated by X-ray diffraction studies on samples equilibrated either in vacuum or under flowing inert gas at temperatures between 1073 and 1423 K. For the SrxBa1-xO solid solution an asymmetric phase boundary, characterized by a critical temperature of 1356 (+/-4) K and composition x=0.55 (+/-0.008), is obtained. Thermodynamic mixing properties of the solid solution, derived from the experimental phase boundary compositions and temperatures, can be represented by the expression: Delta G(E)=x(1-x){33 390-7.09T)x+(29 340-6.23T)(1-x)} J mol(-1)It is necessary to include excess entropy terms to obtain a good fit to the experimental data. The chemical spinodal curve is computed from the thermodynamic parameters
Resumo:
We performed high resolution spectroscopy of the solar corona during the total solar eclipse of 22 July 2009 in two emission lines: the green line at 5303 due to Fe xiv and the red line at 6374 due to Fe x, simultaneously from Anji (latitude 30A degrees 28.1' N; longitude 119A degrees 35.4' E; elevation 890 m), China. A two-mirror coelostat with 100 cm focal length lens produced a 9.2 mm image of the Sun. The spectrograph using 140 cm focal length lens in Littrow mode and a grating with 600 lines per millimeter blazed at 2 mu m provided a dispersion of 30 m and 43 m per pixel in the fourth order around the green line and third order around the red line, respectively. Two Peltier cooled 1k x 1k CCD cameras, with a pixel size of 13 mu m square and 14-bit readout at 10 MHz operated in frame transfer mode, were used to obtain the time sequence spectra in two emission lines simultaneously. The duration of totality was 341 s, but we could get spectra for 270 s after a trial exposure at an interval of 5 s. We report here on the detection of intensity, velocity, and line width oscillations with periodicity in the range of 25 -50 s. These oscillations can be interpreted in terms of the presence of fast magnetoacoustic waves or torsional Alfv,n waves. The intensity ratios of green to red emission lines indicate the temperature of the corona to be 1.65 MK in the equatorial region and 1.40 MK in the polar region, relatively higher than the expected temperature during the low activity period. The width variation of the emission lines in different coronal structures suggests different physical conditions in different structures.
Resumo:
The vast biodiversity of nature provides bioactive compounds that may be useful in the fight against chronic diseases. This study was designed to investigate the protective effects of the ethanol extract of Spirulina laxissima West (Pseudanabaenaceae) (EESL) against carbon tetrachloride (CCl4) induced hepatotoxicities in rats. Male albino rats of Sprague-Dawley strain were treated orally with the ethanol extract of S. laxissima (50, 100 mg kg(-1) body wt.) 1 h before each CCl4 administration. The ethanol extract of S. laxissima showed the maximum antioxidant property in vitro. There were statistically significant losses in the activities of antioxidant enzymes and an increase in TBARS and liver function marker enzymes in the serum of the CCl4-treated group compared with the control group. However, all the tested groups were able to counteract these effects. The antioxidant activity of the extracts might be attributable to its proton-donating ability, as evidenced by DPPH. In the present study, the decline in the level of antioxidant observed in CCl4-treated rats is a clear manifestation of excessive formation of radicals and activation of the lipid peroxidation system resulting in tissue damage. The significant increases in the concentration of antioxidant enzymes in tissues of animals treated with CCl4 + EESL indicate the antioxidant effect of EESL. This study suggests that EESL can protect the liver against CCl4-induced oxidative damage in rats, and the hepatoprotective effect might be correlated with its antioxidant and radical-scavenging effects.
Resumo:
Atomistic simulation of Ag, Al, Au, Cu, Ni, Pd, and Pt FCC metallic nanowires show a universal FCC -> HCP phase transformation below a critical cross-sectional size, which is reported for the first time in this paper. The newly observed HCP structure is also confirmed from previous experimental results. Above the critical cross-sectional size, initial < 100 >/{100} FCC metallic nanowires are found to be metastable. External thermal heating shows the transformation of metastable < 100 >/{100} FCC nanowires into < 110 >/{111} stable configuration. Size dependent metastability/instability is also correlated with initial residual stresses of the nanowire by use of molecular static simulation using the conjugant gradient method at a temperature of 0 K. It is found that a smaller cross-sectional dimension of an initial FCC nanowire shows instability due to higher initial residual stresses, and the nanowire is transformed into the novel HCP structure. The initial residual stress shows reduction with an increase in the cross-sectional size of the nanowires. A size dependent critical temperature is also reported for metastable FCC nanowires using molecular dynamic, to capture the < 110 >/{111} to < 100 >/{100} shape memory and pseudoelasticity.
Resumo:
Japanese encephalitis virus (JEV) is a positive stranded RNA virus that belongs to the flavivirus group, JEV infection damages the central nervous system (CNS) and is one of the main causative agents of acute encephalitis, H-2 restricted virus-specific cytotoxic T lymphocytes (CTL) have been generated specifically against JEV in our laboratory and these CTL have been shown to protect mice against lethal challenge with JEV, Virus replication was found to be inhibited in the brains of animals that mere adoptively transferred with JEV specific CTL as revealed by immunohistological staining as,veil as viral plaque assays. We further show that virus specific CTL could be recovered from such protected mice as long as 45 days after adoptive transfer.
Resumo:
Optical and structural properties of reactive ion beam sputter deposited CeO2 films as a function of oxygen partial pressures (P-O2) and substrate temperatures (T-s) have been investigated. The films deposited at ambient temperature with P-O2 of 0.01 Pa have shown a refractive index of 2.36 which increased to 2.44 at 400 degrees C. Refractive index and extinction coefficient are sensitive up to a T-s of similar to 200 degrees C. Raman spectroscopy and X-ray diffraction (XRD) have been used to characterise the structural properties. A preferential orientation of (220) was observed up to a T-s of 200 degrees C and it changed to (200) at 400 degrees C: and above. Raman line broadening, peak shift and XRD broadening indicate the formation of nanocrystalline phase for the films deposited up to a substrate temperature of 300 degrees C. However, crystallinity of the films were better for T-s values above 300 degrees C. In general both optical and structural properties were unusual compared to the films deposited by conventional electron beam evaporation, but were similar in some aspects to those deposited by ion-assisted deposition. Apart from thermal effects, this behavior is also attributed to the bombardment of backscattered ions/neutrals on the growing film as well as the higher kinetic energy of the condensing species, together resulting in increased packing density. (C) 1997 Elsevier Science S.A.
Resumo:
We point out how fluctuation of the phase of the superconducting order parameter can play a key role in our understanding of high Te superconductors. A simple universal criterion is given which illustrates why all oxide superconductors in contrast to classical superconductors ought to behave as a lattice of cooper pairs. T-c is to be thought of as the temperature of phase coherence or the temperature above which the lattice of Cooperpair 'melts' into a phase of Cooper-pair droplets that starts forming at T approximate to T-* . This is the pseudo-gap region. Quantum fluctuation of the phase predicts a superconductor to insulator phase transition for all underdoped materials.
Resumo:
This paper investigates the loss of high mass ions due to their initial thermal energy in ion trap mass analyzers. It provides an analytical expression for estimating the percentage loss of ions of a given mass at a particular temperature, in a trap operating under a predetermined set of conditions. The expression we developed can be used to study the loss of ions due to its initial thermal energy in traps which have nonlinear fields as well as those which have linear fields. The expression for the percentage of ions lost is shown to be a function of the temperature of the ensemble of ions, ion mass and ion escape velocity. An analytical expression for the escape velocity has also been derived in terms of the trapping field, drive frequency and ion mass. Because the trapping field is determined by trap design parameters and operating conditions, it has been possible to study the influence of these parameters on ion loss. The parameters investigated include ion temperature, magnitude of the initial potential applied to the ring electrode (which determines the low mass cut-off), trap size, dimensions of apertures in the endcap electrodes and RF drive frequency. Our studies demonstrate that ion loss due to initial thermal energy increases with increase in mass and that, in the traps investigated, ion escape occurs in the radial direction. Reduction in the loss of high mass ions is favoured by lower ion temperatures, increasing low mass cut-off, increasing trap size, and higher RF drive frequencies. However, dimensions of the apertures in the endcap electrodes do not influence ion loss in the range of aperture sizes considered. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
OFHC copper pins with 10 ppm oxygen were slid against alumina at a load of 50 N and sliding speeds of 0.1 ms(-1) to 4.0 ms(-1) The wear characteristics of copper were related to the strain rate response of copper under uniaxial compression between strain rates of 0.1 s(-1) and 100 s(-1) and temperatures in the range of 298 K to 673 K. It is seen that copper undergoes flow banding at strain rates of 1 s(-1) up to a temperature of 523 K, which is the major instability in the region tested. These flow bands are regions of crack nucleation. The strain rates and temperatures existing in the subsurface of copper slid against alumina are estimated and superimposed on the strain rate response map of copper. The superposition shows that the subsurface of copper slid at low velocities is likely to exhibit flow band instability induced cracking. It is suggested that this is the,reason for the observed high wear rate at low velocities. The subsurface deformation with increasing velocity becomes more homogeneous. This reduces the wear rate. At velocities >2 ms(-1) there is homogenous flow and extrusion of thin (10 mu m) bands of material out of the trailing edge. This results in the gradual increase of wear rate with increasing velocity above 2.0 ms(-1).
Resumo:
Glasses in the system (1 - x)Li2B4O7-xBi(2)WO(6) (0.1 less than or equal to x less than or equal to 0.35) were prepared by splat quenching technique. Powder X-ray diffraction (XRD) and differential thermal analysis (DTA) were employed to characterize the as-quenched glasses. High-resolution transmission electron microscopy (HR TEM) revealed the presence of fine, nearly spherical crystallites of Bi2WO6 varying from 1.5 to 20 nm in size, depending on x in the as-quenched glasses. The glasses (corresponding to x = 0.3) heat-treated at 723 K for 6 h gave rise to a clear crystalline phase of Bi2WO6 embedded in the Li2B4O7 glass matrix, as observed by X-ray studies. The dielectric constants of the as-quenched glasses as well as the glass-ceramics decreased with increase in frequency (40Hz-100 kHz) at 300 K, and the value obtained for the glass-ceramic (x = 0.2) is in agreement with the values predicted using Maxwell's model and the logarithmic mixture rule. The dielectric constants for both the as-quenched glass and the glass-ceramic increased with increase in temperature (300 - 873 K) and exhibited anomalies close to the onset of the crystallization temperature of the host glass matrix. The optical transmission properties:of these glass-ceramics were found to be compositional dependant. (C) 2000 Elsevier Science Ltd.
Resumo:
The leading order "temperature" of a dense two-dimensional granular material fluidized by external vibrations is determined. The grain interactions are characterized by inelastic collisions, but the coefficient of restitution is considered to be close to 1, so that the dissipation of energy during a collision is small compared to the average energy of a particle. An asymptotic solution is obtained where the particles are considered to be elastic in the leading approximation. The velocity distribution is a Maxwell-Boltzmann distribution in the leading approximation,. The density profile is determined by solving the momentum balance equation in the vertical direction, where the relation between the pressure and density is provided by the virial equation of state. The temperature is determined by relating the source of energy due to the vibrating surface and the energy dissipation due to inelastic collisions. The predictions of the present analysis show good agreement with simulation results at higher densities where theories for a dilute vibrated granular material, with the pressure-density relation provided by the ideal gas law, sire in error. [:S1063-651X(99)04408-6].
Resumo:
The prime focus of this study is to design a 50 mm internal diameter diaphragmless shock tube that can be used in an industrial facility for repeated loading of shock waves. The instantaneous rise in pressure and temperature of a medium can be used in a variety of industrial applications. We designed, fabricated and tested three different shock wave generators of which one system employs a highly elastic rubber membrane and the other systems use a fast acting pneumatic valve instead of conventional metal diaphragms. The valve opening speed is obtained with the help of a high speed camera. For shock generation systems with a pneumatic cylinder, it ranges from 0.325 to 1.15 m/s while it is around 8.3 m/s for the rubber membrane. Experiments are conducted using the three diaphragmless systems and the results obtained are analyzed carefully to obtain a relation between the opening speed of the valve and the amount of gas that is actually utilized in the generation of the shock wave for each system. The rubber membrane is not suitable for industrial applications because it needs to be replaced regularly and cannot withstand high driver pressures. The maximum shock Mach number obtained using the new diaphragmless system that uses the pneumatic valve is 2.125 +/- 0.2%. This system shows much promise for automation in an industrial environment.
Resumo:
Commercially important flavor esters of isoamyl alcohol, catalyzed by crude hog pancreas lipase (HPL), were synthesized under solvent-free conditions and in supercritical carbon dioxide. The esters synthesized were isoamyl acetate, isoamyl propionate, isoamyl butyrate, and isoamyl octanoate. Very low yields (3-4%) of isoamyl acetate were obtained, but high yields for the other three esters were obtained under both supercritical and solvent-free conditions. The yields of esters of the even-carbon acids, isoamyl acetate, butyrate, and octanoate, increased with increasing chain length, whereas the yield of isoamyl propionate was higher than that of isoamyl butyrate. The optimum temperature of the reaction was higher under supercritical conditions (45 degreesC) than under solvent-free conditions (35-40 degreesC). The effects of other parameters such as alcohol concentration, water concentration, and enzyme loading were investigated. An increase in the water concentration decreased the conversion significantly in supercritical carbon dioxide but not under solvent-free conditions. The optimum ratio of alcohol to acid was dependent on the extent of inhibition by the acid. Although providing a higher apparent yield by being run in a highly concentrated medium, the overall conversion under solvent-free conditions was lower than that under supercritical conditions for similar enzyme concentrations, indicating that the synthesis of esters in supercritical carbon dioxide might be a viable option.
Resumo:
Glasses of various compositions in the system (100 - x)Li-2 B-4 O-7 - x (SrO-Bi2O3-Nb2O5) (10 less than or equal to x less than or equal to 60) (in molar ratio) were prepared via a conventional melt-quenching technique. The glassy nature of the as-quenched samples was established by Differential Thermal Analyses (DTA). X-ray powder diffraction (XRD) and Transmission Electron Microscopic (TEM) studies confirmed the amorphous nature of the as quenched and crystallinity in the heat-treated samples. The formation of nanocrystalline layered perovskite SrBi2Nb2O9 (SBN) phase, in the samples heat-treated at temperatures higher than 550degreesC, through an intermediate fluorite phase in the LBO glass matrix was confirmed by both the XRD and High Resolution Transmission Electron Microscopy (HRTEM). The samples that were heat-treated at two different temperatures, 550 and 625degreesC, (containing 0.35 and 0.47 mum sized SBN crystallites) exhibited broad dielectric anomalies in the vicinity of ferroelectric to paraelectric transition temperature of the parent SBN ceramics. A downward shift in the phase transition temperature was observed with decreasing crystallite size of SBN. The observation of pyroelectric and ferroelectric properties for the present samples confirmed their polar nature.