968 resultados para Taylor family.
Resumo:
We report on an experimental study of long normal Saffman-Taylor fingers subject to periodic forcing. The sides of the finger develop a low amplitude, long wavelength instability. We discuss the finger response in stationary and nonstationary situations, as well as the dynamics towards the stationary states. The response frequency of the instability increases with forcing frequency at low forcing frequencies, while, remarkably, it becomes independent of forcing frequency at large forcing frequencies. This implies a process of wavelength selection. These observations are in good agreement with previous numerical results reported in [Ledesma-Aguilar et al., Phys. Rev. E 71, 016312 (2005)]. We also study the average value of the finger width, and its fluctuations, as a function of forcing frequency. The average finger width is always smaller than the width of the steady-state finger. Fluctuations have a nonmonotonic behavior with a maximum at a particular frequency.
Resumo:
We make a numerical study of the effect that spatial perturbations have in normal Saffman-Taylor fingers driven at constant pressure gradients. We use a phase field model that allows for spatial variations in the Hele-Shaw cell. We find that, regardless of the specific way in which spatial perturbations are introduced, a lateral instability develops on the sides of the propagating Saffman-Taylor finger. Moreover, the instability exists regardless of the intensity of spatial perturbations in the cell as long as the perturbations are felt by the finger tip. If, as the finger propagates, the spatial perturbations felt by the tip change, the instability is nonperiodic. If, as the finger propagates, the spatial perturbations felt by the tip are persistent, the instability developed is periodic. In the later case, the instability is symmetrical or asymmetrical depending on the intensity of the perturbation.
Resumo:
A dynamical systems approach to competition of Saffman-Taylor fingers in a Hele-Shaw channel is developed. This is based on global analysis of the phase space flow of the low-dimensional ordinary-differential-equation sets associated with the classes of exact solutions of the problem without surface tension. Some simple examples are studied in detail. A general proof of the existence of finite-time singularities for broad classes of solutions is given. Solutions leading to finite-time interface pinchoff are also identified. The existence of a continuum of multifinger fixed points and its dynamical implications are discussed. We conclude that exact zero-surface tension solutions taken in a global sense as families of trajectories in phase space are unphysical because the multifinger fixed points are nonhyperbolic, and an unfolding does not exist within the same class of solutions. Hyperbolicity (saddle-point structure) of the multifinger fixed points is argued to be essential to the physically correct qualitative description of finger competition. The restoring of hyperbolicity by surface tension is proposed as the key point to formulate a generic dynamical solvability scenario for interfacial pattern selection.
Resumo:
We make an experimental characterization of the effect that static disorder has on the shape of a normal Saffman-Taylor finger. We find that static noise induces a small amplitude and long wavelength instability on the sides of the finger. Fluctuations on the finger sides have a dominant wavelength, indicating that the system acts as a selective amplifier of static noise. The dominant wavelength does not seem to be very sensitive to the intensity of static noise present in the system. On the other hand, at a given flow rate, rms fluctuations of the finger width, decrease with decreasing intensity of static noise. This might explain why the sides of the fingers are flat for typical Saffman-Taylor experiments. Comparison with previous numerical studies of the effect that temporal noise has on the Saffman-Taylor finger, leads to conclude that the effect of temporal noise and static noise are similar. The behavior of fluctuations of the finger width found in our experiments, is qualitatively similar to one recently reported, in the sense that, the magnitude of the width fluctuations decays as a power law of the capillary number, at low flow rates, and increases with capillary number for larger flow rates.
Resumo:
A-1 - Monthly Public Assistance Statistical Report Family Investment Program
Resumo:
GLUT proteins are encoded by the SLC2 genes and are members of the major facilitator superfamily of membrane transporters. Fourteen GLUT proteins are expressed in the human and they are categorized into three classes based on sequence similarity. All GLUTs appear to transport hexoses or polyols when expressed ectopically, but the primary physiological substrates for several of the GLUTs remain uncertain. GLUTs 1-5 are the most thoroughly studied and all have well established roles as glucose and/or fructose transporters in various tissues and cell types. The GLUT proteins are comprised of ∼500 amino acid residues, possess a single N-linked oligosaccharide, and have 12 membrane-spanning domains. In this review we briefly describe the major characteristics of the 14 GLUT family members.
Resumo:
The recent identification of several additional members of the family of sugar transport facilitators (gene symbol SLC2A, protein symbol GLUT) has created a heterogeneous and, in part, confusing nomenclature. Therefore, this letter provides a summary of the family members and suggests a systematic nomenclature for SLC2A and GLUT symbols.
Resumo:
Audit report on Taylor County, Iowa for the year ended June 30, 2011
Resumo:
BACKGROUND: Walk-in centres may improve access to healthcare for some patients, due to their convenient location and extensive opening hours, with no need for an appointment. Herein, we describe and assess a new model of walk-in centre, characterised by care provided by residents and supervision achieved by experienced family doctors. The main aim of the study was to assess patients' satisfaction about the care they received from residents and their supervision by family doctors. The secondary aim was to describe walk-in patients' demographic characteristics and to identify potential associations with satisfaction. METHODS: The study was conducted in the walk-in centre of Lausanne. Patients who consulted between 11th and 31st April were automatically included and received a questionnaire in French. We used a five-point Likert scale, ranging from "not at all satisfied" to "very satisfied", converted from values of 1 to 5. We focused on the satisfaction regarding residents' care and supervision by a family doctor. The former was divided in three categories: "Skills", "Treatment" and "Behaviour". A mean satisfaction score was calculated for each category and a multivariable logistic model was applied in order to identify associations with patients' demographics. RESULTS: The overall response rate was 47% [184/395]. Walk-in patients were more likely to be women (62%), young (median age 31), with a high education level (40% of University degree or equivalent). Patients were "very satisfied" with residents' care, with a median satisfaction score between 4.5 and 5, for each category. Over 90% of patients were "satisfied" or "very satisfied" that a family doctor was involved in the consultation. Age showed the greatest association with satisfaction. CONCLUSION: Patients were highly satisfied with care provided by residents and with the involvement of a family doctor in the consultation. Older age showed the greatest positive association with satisfaction with a positive impact. The high level satisfaction reported by walk-in patients supports this new model of walk-in centre.
Resumo:
Superantigens (SAg) are proteins of bacterial or viral origin able to activate T cells by forming a trimolecular complex with both MHC class II molecules and the T cell receptor (TCR), leading to clonal deletion of reactive T cells in the thymus. SAg interact with the TCR through the beta chain variable region (Vbeta), but the TCR alpha chain has been shown to have an influence on the T cell reactivity. We have investigated here the role of the TCR alpha chain in the modulation of T cell reactivity to Mtv-7 SAg by comparing the peripheral usage of Valpha2 in Vbeta6(+) (SAg-reactive) and Vbeta8.2(+) (SAg non-reactive) T cells, in either BALB/D2 (Mtv-7(+)) or BALB/c (Mtv-7(-)) mice. The results show, first, that pairing of Vbeta6 with certain Valpha2 family members prevents T cell deletion by Mtv-7 SAg. Second, there is a strikingly different distribution of the Valpha2 family members in CD4 and CD8 populations of Vbeta6 but not of Vbeta8.2 T cells, irrespective of the presence of Mtv-7 SAg. Third, the alpha chain may play a role in the overall stability of the TCR/SAg/MHC complex. Taken together, these results suggest that the Valpha domain contributes to the selective process by its role in the TCR reactivity to SAg/MHC class II complexes, most likely by influencing the orientation of the Vbeta domain in the TCR alphabeta heterodimer.
Resumo:
Distortions in a family of conjugated polymers are studied using two complementary approaches: within a many-body valence bond approach using a transfer-matrix technique to treat the Heisenberg model of the systems, and also in terms of the tight-binding band-theoretic model with interactions limited to nearest neighbors. The computations indicate that both methods predict the presence or absence of the same distortions in most of the polymers studied.
Resumo:
Audit report on the Iowa Federal Family Education Loan Program Division, a Division of the Iowa College Student Aid Commission, for the year ended June 30, 2011