992 resultados para TROPICAL RAIN-FOREST
Resumo:
Rare species are one of the principal components of the species richness and diversity encountered in Dense Ombrophilous Tropical Forests. This study sought to analyze the rare canopy species within the Atlantic Coastal Forest in Rio de Janeiro State, Brazil. Six different communities were examined: Dense Ombrophilous alluvial Forest; Dense sub-montane Ombrophilous Forest; Dense Montane Ombrophilous in Serra do Mar and Serra da Mantiqueira. In each area the vegetation was sampled within forty 10 x 25 m plots alternately distributed along a linear transect. All trees with DBH (1.3 m above ground level) a parts per thousand yen5 cm were sampled. The canopy was characterized using the allometric relationship between diameter and height, and included all trees with BDH a parts per thousand yen10 cm and height a parts per thousand yen10 m. A total of 64 families, 206 genera, and 542 species were sampled, of which 297 (54.8%) represented rare species (less than one individual per hectare). The percentage of rare species varied from 34 to 50% in each of the different communities sampled. A majority of these rare trees belonged to the Rosidae, and a smaller proportion to the Dilleniidae. It was concluded that there was no apparent pattern to rarity among families, that rarity was probably derived from a number of processes (such as gap formation), and that a great majority of the rare species sampled were consistently rare. This indicates that the restricted geographic distribution and high degree of endemism of many arboreal taxa justifies the conservation of even small fragments of Atlantic Forest.
Resumo:
Tropical countries face special specific problems in implementing sustainable forest management (SFM). In many countries, questions are raised on whether tropical forests should be publicly, commonly or privately owned and managed in order to enhance sustainability. Other debates also focus on whether small-scale enterprises are better positioned than large-scale industrial concessions to reduce poverty and attain sustainable management. In countries where large tracts of forest are state-owned, concessions are viewed as a means of delivering services of public and collective interest through an association of private investment and public regulation. However, the success of an industrial concession model in countries with large forest resource endowment to achieve multiple goals such as sustainable forest management and local/regional development depends on two critical assumptions. First, forest functions and services should be managed and maintained as public goods. In many cases, additional uses - and corresponding rights - can take place alongside logging activities. Industrial concessions can be more efficient than other tenure models (such as community-based forest management and small-scale enterprises) in achieving SFM, add value to raw material and comply with growing environmental norms. This is especially the case in market-remote areas with low population density and poor infrastructure. Secondly, to achieve these different outcomes, any concession system needs to be monitored and regulated, especially in contexts dominated by asymmetrical information between regulating authorities and concessionaires. New institutional responses have recently been put forward in several countries, providing valuable materials to design a renewed policy mix which associates public and private incentives. This paper provides a survey of the experience of forest concessions in several Central African and South American countries. The concession system is examined in order to clarify the issues involved, the problems encountered, and what can be learned from the shared experience of these countries in the last decade. This paper argues that despite a sometimes patchy record, concessions can help promote SFM so long as they are packaged with a certain number of specific measures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Over the past 150 years, Brazil has played a pioneering role in developing environmental policies and pursuing forest conservation and ecological restoration of degraded ecosystems. In particular, the Brazilian Forest Act, first drafted in 1934, has been fundamental in reducing deforestation and engaging private land owners in forest restoration initiatives. At the time of writing (December 2010), however, a proposal for major revision of the Brazilian Forest Act is under intense debate in the National Assembly, and we are deeply concerned about the outcome. On the basis of the analysis of detailed vegetation and hydrographic maps, we estimate that the proposed changes may reduce the total amount of potential areas for restoration in the Atlantic Forest by approximately 6 million hectares. As a radically different policy model, we present the Atlantic Forest Restoration Pact (AFRP), which is a group of more than 160 members that represents one of the most important and ambitious ecological restoration programs in the world. The AFRP aims to restore 15 million hectares of degraded lands in the Brazilian Atlantic Forest biome by 2050 and increase the current forest cover of the biome from 17% to at least 30%. We argue that not only should Brazilian lawmakers refrain from revising the existing Forest Law, but also greatly step up investments in the science, business, and practice of ecological restoration throughout the country, including the Atlantic Forest. The AFRP provides a template that could be adapted to other forest biomes in Brazil and to other megadiversity countries around the world.
Resumo:
Bamboos often negatively affect tree recruitment, survival, and growth, leading to arrested tree regeneration in forested habitats. Studies so far have focused on the effects of bamboos on the performance of seedlings and saplings, but the influence of bamboos on forest dynamics may start very early in the forest regeneration process by altering seed rain patterns. We tested the prediction that the density and composition of the seed rain are altered and seed limitation is higher in stands of Guadua tagoara (B or bamboo stands), a large-sized woody bamboo native from the Brazilian Atlantic Forest, compared to forest patches without bamboos (NB or non-bamboo stands). Forty 1 m(2) seed traps were set in B and NB stands, and the seed rain was monitored monthly for 1 year. The seed rain was not greatly altered by the presence of bamboos: rarefied seed species richness was higher for B stands, patterns of dominance and density of seeds were similar between stands, and differences in overall composition were slight. Seed limitation, however, was greater at B stands, likely as a resulted of reduced tree density. Despite Such reduced density, the presence of trees growing amidst and over the bamboos seems to play a key role in keeping the seeds falling in B stands because they serve as food sources for frugivores or simply as perches for them. The loss of such trees may lead to enhanced seed limitation, contributing ultimately to the self-perpetuating bamboo disturbance cycle. (C) 2008 Elsevier B,V. All rights reserved.
Resumo:
(Impact of seedling removal on regenerating community structure of a seasonal semideciduous forest). Transplanting seedlings and saplings from natural forests has been considered an alternative to producing saplings of native species for forest restoration purposes, but the possible impact of this procedure on plant community regeneration has not been investigated. This work evaluates the impact of different treatments of shrub and tree-seedling (up to 30 cm) removal from a seasonal semideciduous forest fragment located in southeastern Brazil on the natural regeneration process. Eighty 2x2 m plots were installed in two habitats (forest edge and interior) and submitted to four seedling-removal treatments (I, II - 100% removal with or without soil mixing; III - 50% removal without soil mixing: and IV - control treatment Without seedling removal). Regeneration density and richness were evaluated before treatment as well as 6, 12 and 18 months later. The results were compared among treatments for each evaluation period and among periods within treatments. There were similarities between edge and interior. The natural regeneration process did not improve with soil mixing. Plots submitted to seedling removal partially recovered plant density; however, these plots had lower species richness when compared to the control and to the initial values before treatment. Seedling removal has a negative impact on the regeneration process of low-density species, thus the use of natural regeneration as a sapling source for forest restoration purposes should focus only on high-density species with well-known regeneration strategies and not on the community as a whole.
Resumo:
Riparian forests are protected by Brazilian law to preserve rivers and their margins. A sugar cane field adjacent to a strip of young riparian forest bordering an older riparian forest along a stream was used to study the riparian forest as a buffer zone to prevent pesticides pollution. Concentrations of the herbicides diuron, hexazinone and tebuthiuron were determined in different soil layers of a Red Yellow Oxisol during 2003 and 2004. The determination was done by High Performance Liquid Chromatography with reverse phase C-18 column, through two mobile phases. Diuron and hexazinone concentration diminished between the sugar cane and riparian forest as buffer strip demonstrating a protective effect. However, tebuthiuron had about four times higher concentrations in the old riparian forest compared to the other areas. Concentrations were higher in the surface and decreased in deeper soil layers in the old riparian forest suggesting that this herbicide probably was introduced by air pollution. This pesticide concentrated in the canopy could be washed by rain to the soil adjacent to the stream. Our data suggest that climate conditions were responsible for enhanced volatilization exposing the old riparian forest to more air pollution that was captured by the higher canopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Some Eucalyptus species are widely used as a plantation crop in tropical and subtropical regions. One reason for this is the diversity of end uses, but the main reason is the high level of wood production obtained from commercial plantings. With the advancement of biotechnology it will be possible to expand the geographical area in which eucalypts can be used as commercial plantation crops, especially in regions with current climatic restrictions. Despite the popularity of eucalypts and their increasing range, questions still exist, in both traditional planting areas and in the new regions: Can eucalypts invade areas of native vegetation, causing damage to natural ecosystems biodiversity? The objective of this study it was to assess whether eucalypts can invade native vegetation fragments in proximity to commercial stands, and what factors promote this invasive growth. Thus, three experiments were established in forest fragments located in three different regions of Brazil. Each experiment was composed of 40 plots (1 m(2) each one), 20 plots located at the border between the forest fragment and eucalypts plantation, and 20 plots in the interior of the forest fragments. In each experimental site, the plots were paired by two soil exposure conditions, 10 plots in natural conditions and 10 plots with soil exposure (no plant and no litter). During the rainy season, 2 g of eucalypts seeds were sown in each plot, including Eucalyptus grandis or a hybrid of E. urophylla x E. grandis, the most common commercial eucalypt species planted in the three region. At 15, 30, 45, 90, 180, 270 and 360 days after sowing, we assessed the number of seedlings of eucalypts and the number of seedlings of native species resulting from natural regeneration. Fifteen days after sowing, the greatest number of eucalypts seedlings (37 m(-2)) was observed in the plots with lower luminosity and exposed soil. Also, for native species, it was observed that exposed soil improved natural germination reaching the highest number of 163 seedlings per square meter. Site and soil exposure were the factors that have the greatest influence on seed germination of both eucalypt and native species. However, 270 days after sowing, eucalypt seedlings were not observed at any of the three experimental sites. The result shows the inability of eucalypts to adapt to condition outside of their natural range. However, native species demonstrated their strong capacity for natural regeneration in forest fragments under the same conditions where eucalypts were seeded. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The sustainability of fast-growing tropical Eucalyptus plantations is of concern in a context of rising fertilizer costs, since large amounts of nutrients are removed with biomass every 6-7 years from highly weathered soils. A better understanding of the dynamics of tree requirements is required to match fertilization regimes to the availability of each nutrient in the soil. The nutrition of Eucalyptus plantations has been intensively investigated and many studies have focused on specific fluxes in the biogeochemical cycles of nutrients. However, studies dealing with complete cycles are scarce for the Tropics. The objective of this paper was to compare these cycles for Eucalyptus plantations in Congo and Brazil, with contrasting climates, soil properties, and management practices. The main features were similar in the two situations. Most nutrient fluxes were driven by crown establishment the two first years after planting and total biomass production thereafter. These forests were characterized by huge nutrient requirements: 155, 10, 52, 55 and 23 kg ha(-1) of N, P, K, Ca and Mg the first year after planting at the Brazilian study site, respectively. High growth rates the first months after planting were essential to take advantage of the large amounts of nutrients released into the soil solutions by organic matter mineralization after harvesting. This study highlighted the predominant role of biological and biochemical cycles over the geochemical cycle of nutrients in tropical Eucalyptus plantations and indicated the prime importance of carefully managing organic matter in these soils. Limited nutrient losses through deep drainage after clear-cutting in the sandy soils of the two study sites showed the remarkable efficiency of Eucalyptus trees in keeping limited nutrient pools within the ecosystem, even after major disturbances. Nutrient input-output budgets suggested that Eucalyptus plantations take advantage of soil fertility inherited from previous land uses and that long-term sustainability will require an increase in the inputs of certain nutrients. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work was to study the diversity of the fauna of plant-parasitic nematodes in preserved areas of the Amazon forest, Mato Grosso state (MT), and to assess the effect of agricultural land use on plant-parasitic nematode communities. Soil and root samples were collected in each location in the late spring during the rainy season of 2005, in two areas of primary vegetation in Nova Maringa (Northwest) and Guaranta do Norte (North) and two adjacent areas planted with teak trees (Tectona grandis) and pasture (Brachiaria brizantha). Four-teen taxa of plant-parasitic nematodes were identified at species level: Discocriconemella degrissei, D. limitanea, Dolichodorus minor, Helicotylenchus erythrinae, H. pseudorobustus, Meloidogyne exigua, M javanica, Mesocriconema ornata, Paratrichodorus minor, Pratylenchus loosi, P zeae, Rotylenchus caudaphasmidius, Xiphinema ensiculiferum and X luci (for the first report of this in Brazil) and five at genus level (Atalodera sp., Hemicriconemoides sp., Meloidogyne sp., Paratylenchus sp., and Trophotylenchulus sp). These taxa, mainly those from primary vegetation, belong to families with different parasitic behavior, probably due to great plant diversity in the Amazon forest. Comparison between the two preserved areas revealed low index of similarity, as a consequence of the endemic flora in the Amazon forest, and no similarity was observed between preserved native vegetation and adjacent cultivated areas, demonstrating the high influence of agricultural activity on the plant-parasitic nematode communities. There is evidence of recent introduction of plant-parasitic nematodes in these cultivated areas; therefore measures should be taken to prevent the loss of economic sustainability in Amazonian soils. Keywords: abundance, Amazonia, diversity, Brachiaria brizantha, plant-parasitic nematode fauna, Tectona grandis.
Resumo:
This study aimed at characterizing the potential for natural regeneration of native vegetation in the under-story of an earlier Eucalyptus saligna Smith production stand. The study was carried out at the Parque das Neblinas, Bertioga municipality, SP, in a 45 ha third rotation stand; which had been abandoned 15 years ago for natural regeneration to occur. The sampling was done in 24 plots of 20 x 40 m. The sampled area was of 19,200 m(2), with inventory made of 100% of the eucalyptus trees. All regeneration trees with a height >= 1.30 m and DBH >= 5.0 cm were measured, as well as adult individuals with DBH >= 5.0 cm; surveyed in two size classes. 1,417 individuals of E. saligna were measured, with a density of 738,02 individuals/ha and a basal area of 22.69 m(2)/ha. Among 2,763 natural regeneration individuals, 111 species belonged to 66 genera and 34 botanical families. The species represented 43.7% of the tree richness of neighboring native forest fragments. The total estimated density and the basal area were respectively 1,052.6 individuals/ha and 6.4 m(2)/ha of autochthonous trees with DBH >= 5.0 cm (Class 1); while for regeneration there were 3,864.58 individuals/ha, and 2.76 m(2)/ha of individuals with a height >= 1.30 m and DBH <5.0 cm (Class 2). Shannon diversity (H`) was 2.83 and 3.68, respectively, for Classes 1 and 2, and the corrected species richness for a 1000-individual sample (R(1000)) were 75.6 and 87.29 (Fisher`s a index) for the same classes. The majority of the species (34.84%) was typical from the understory of wet tropical forest and had zoochoric fruit dispersal (67.57%). The results indicate that, under these conditions, a eucalyptus forest is able to provide adequate regeneration niches for native vegetation, and may represent a sink habitat for local populations.
Resumo:
The tree species Guarea guidonea (Meliaceae) belongs to a predominantly tropical family, being largely found in natural or anthropic forest fragments within the Brazilian Atlantic Forest. Aiming to develop future studies on the genetic structure of plant species from forests fragments, eleven microsatellite markers were developed for Guarea guidonia, based on the analysis of 45 individuals from natural populations of three different fragments within the forest-anthropic edge, interior fragment and natural edge. Only eight loci showed to be polymorphic and the number of alleles ranged from two to four (mean of 2.50). All populations showed almost the same level of genetic diversity (mean H(e) = 0.3775). These loci will be useful for population genetics studies on Guarea guidonea, providing information for the conservation and management of this species.
Resumo:
The responses of the ant community to environmental change, from forest fragment to agroecosystems (coffee or pasture) were evaluated in the south of the state of Minas Gerais, Brazil. In this paper we analized the interactions between forest and the two most typical agroecosystem from southest Brazil: sun-growing coffee plantation and introduced pasture. We sampled the ant community from five of each agroecosystems, inside the adjacent forest fragment, and on the edge between them. In each site we removed the litter from fifteen 1m(2) plots and extracted the ants using a Winkler extractor. A total of 165 ant species, distributed in 48 genera and 10 subfamilies were recorded. The coffee plantation presented the lowest abundance and estimated species richness. The causes of the changes observed among the areas are discussed.
Resumo:
Many tropical tree species produce growth rings in response to seasonal environmental factors that influence the activity of the vascular cambium. We applied the following methods to analyze the annual nature of treering formation of 24 tree species from a seasonal semi-deciduous forest of southeast Brazil: describing wood anatomy and phenology, counting tree rings after cambium markings, and using permanent dendrometer bands. After 7 years of systematic observations and measurements, we found the following: the trees lost their leaves during the dry season and grew new leaves at the end of the same season; trunk increment dynamics corresponded to seasonal changes in precipitation, with higher increment (active period) during the rainy season (October-April) and lower increment (dormant period) during the dry season (May-September); the number of tree rings formed after injuries to the cambium coincided with the number of years since the extraction of the wood samples. As a result of these observations, it was concluded that most study trees formed one growth ring per year. This suggests that tree species from the seasonal semi-deciduous forests of Brazil have an annual cycle of wood formation. Therefore, these trees have potential for use in future studies of tree age and radial growth rates, as well as to infer ecological and regional climatic conditions. These future studies can provide important information for the management and conservation of these endangered forests.
Resumo:
Samples of fruit from the jussara palm plant (Euterpe edulis), collected in different regions of the state of Santa Catarina. Brazil, were analyzed for chemical composition. phenolic acids. anthocyanins, flavonoids and fatty acids profile. Results indicated that the jussara fruit has a high lipid content (18.45-44.08%), oleic acid (44.17-55.61%) and linoleic acid (18.19-25.36%) are the fatty acids found in the highest proportion, and other components were proteins (5.13-8.21%). ash (1.55-3.32%) and moisture (34.95-42.47%). Significant differences were found in the total phenolic, total monomeric anthocyanins and other flavonoids for the samples from the five cultivation regions. The fruit from region E harvested in summer, with high temperatures and medium altitudes, had the highest contents of total phenolics (2610.86 +/- 3.89 mg 100 g(-1) GAE) and monomeric anthocyanins (1080.54 +/- 2.33 mg 100g(-1) cy-3-glu). The phenolic compound included ferulic, gallic, hydroxybenzoic and p-coumaric acids, as well as catechin, epicatechin and quercetin. The results show promising perspectives for the exploitation of this tropical fruit with a chemical composition comprising considerable phenolic acids and flavonoids compounds and showing activity antioxidant. (C) 2010 Published by Elsevier Ltd.
Resumo:
Using Landsat imagery, forest canopy density (FCD) estimated with the FCD Mapper®, was correlated with predominant height (PDH, measured as the average height of the tallest 50 trees per hectare) for 20 field plots measured in native forest at Noosa Heads, south-east Queensland, Australia. A corresponding image was used to calculate FCD in Leyte Island, the Philippines and was validated on the ground for accuracy. The FCD Mapper was produced for the International Tropical Timber Organisation and estimates FCD as an index of canopy density using reflectance characteristics of Landsat Enhanced Thematic (ETM) Mapper images. The FCD Mapper is a ‘semi-expert’ computer program which uses interactive screens to allow the operator to make decisions concerning the classification of land into bare soil, grass and forest. At Noosa, a positive strong nonlinear relationship (r2 = 0.86) was found between FCD and PDH for 15 field plots with variable PDH but complete canopy closure. An additional five field plots were measured in forest with a broken canopy and the software assessed these plots as having a much lower FCD than forest with canopy closure. FCD estimates for forest and agricultural land in the island of Leyte and subsequent field validation showed that at appropriate settings, the FCD Mapper differentiated between tropical rainforest and banana or coconut plantation. These findings suggest that in forests with a closed canopy this remote sensing technique has promise for forest inventory and productivity assessment. The findings also suggest that the software has promise for discriminating between native forest with a complete canopy and forest which has a broken canopy, such as coconut or banana plantation.