913 resultados para TRANSGENIC MOUSE MODEL
Resumo:
The pathology associated with Streptococcus pneumoniae meningitis results largely from activation of immune-associated pathways. We systematically investigated the production of IFN subtypes, as well as their influence on pathology, in a mouse model of S. pneumoniae meningitis. Despite the occurrence of a mixed IFN type I/II gene signature, no evidence for production or involvement of type I IFNs in disease progression was found. In contrast, type II IFN (IFN-γ) was strongly induced, and IFN-γ(-/-) mice were significantly protected from severe disease. Using intracellular cytokine staining and targeted cell-depletion approaches, NK cells were found to be the dominant source of IFN-γ. Furthermore, production of IFN-γ was found to be dependent upon ASC and IL-18, indicating that an ASC-dependent inflammasome pathway was responsible for mediating IFN-γ induction. The influence of IFN-γ gene deletion on a range of processes known to be involved in bacterial meningitis pathogenesis was examined. Although neutrophil numbers in the brain were similar in infected wild-type and IFN-γ(-/-) mice, both monocyte recruitment and CCL2 production were less in infected IFN-γ(-/-) mice compared with infected wild-type controls. Additionally, gene expression of NO synthase was strongly diminished in infected IFN-γ(-/-) mice compared with infected controls. Finally, bacterial clearance was enhanced in IFN-γ(-/-) mice, although the underlying mechanism remains unclear. Together, these data suggest that inflammasome-dependent IFN-γ contributes via multiple pathways to pathology during S. pneumoniae meningitis.
Resumo:
To investigate whether alterations in RNA editing (an enzymatic base-specific change to the RNA sequence during primary transcript formation from DNA) of neurotransmitter receptor genes and of transmembrane ion channel genes play a role in human temporal lobe epilepsy (TLE), this exploratory study analyzed 14 known cerebral editing sites in RNA extracted from the brain tissue of 41 patients who underwent surgery for mesial TLE, 23 with hippocampal sclerosis (MTLE+HS). Because intraoperatively sampled RNA cannot be obtained from healthy controls and the best feasible control is identically sampled RNA from patients with a clinically shorter history of epilepsy, the primary aim of the study was to assess the correlation between epilepsy duration and RNA editing in the homogenous group of MTLE+HS. At the functionally relevant I/V site of the voltage-gated potassium channel Kv1.1, an inverse correlation of RNA editing was found with epilepsy duration (r=-0.52, p=0.01) but not with patient age at surgery, suggesting a specific association with either the epileptic process itself or its antiepileptic medication history. No significant correlations were found between RNA editing and clinical parameters at other sites within glutamate receptor or serotonin 2C receptor gene transcripts. An "all-or-none" (≥95% or ≤5%) editing pattern at most or all sites was discovered in 2 patients. As a secondary part of the study, RNA editing was also analyzed as in the previous literature where up to now, few single editing sites were compared with differently obtained RNA from inhomogenous patient groups and autopsies, and by measuring editing changes in our mouse model. The present screening study is first to identify an editing site correlating with a clinical parameter, and to also provide an estimate of the possible effect size at other sites, which is a prerequisite for power analysis needed in planning future studies.
Resumo:
Altered activity of retinal endothelin-1 (ET-1) and nitric oxide may play a causal role in the hemodynamic and histopathological changes of diabetic retinopathy. This study evaluated the therapeutic potential of long-term selective blockade of the ET-1(A) receptor (ETRA) to prevent the development of retinopathy in a genetic mouse model of nonobese type 1 diabetes (NOD). Mice with NOD that received subcutaneous implantation of insulin pellets and wild-type control mice were treated for 4 months with the selective ETRA antagonist LU208075 (30 mg/kg/day) via drinking water. At the end of the study, blood glucose levels were evaluated, and animals were anesthetized and perfused intracardially with FITC-labeled dextran. Retinas were removed and either fixed in formalin for confocal microscope evaluation of retinal vascular filling or transferred to RNALater for quantitative reverse transcriptase-polymerase chain reaction to evaluate expression of NOS-3, NOS-1, ET-1, ETRA, ETRB, and the angiogenic factor adrenomedullin. Compared with wild-type controls, expression of ET-1, ETRA, ETRB, and adrenomedullin in mice with NOD were markedly upregulated in the retinas of nontreated mice (cycle time values relative to GAPDH [deltaCt], 14.8 vs. 13.7, 18.57 vs. 17.5, 10.76 vs. 9.9, and 11.7 vs. 9.1, respectively). Mean integral fluorescence intensity (MIFI) of retinal vascular filling was reduced from normal values of 24 to 12.5 in nontreated animals. LU208075 treatment normalized the upregulated expression of ET-1 and adrenomedullin, as well as the deficit in MIFI, but did not affect the increased ETRA and ETRB expression or the elevated plasma glucose levels found in nontreated animals. NOS isoform expression was essentially unchanged. ETRA antagonists may provide a novel therapeutic strategy to slow or prevent progression of retinal microvascular damage and proliferation in patients for whom there is clear evidence of activation of the ET-1 system.
Resumo:
Myelosuppression is the most common unwanted side effect associated with the administration of anticancer drugs, and infections remain a common cause of death in chemotherapy-treated patients. Several mechanisms of the cytotoxicity of these drugs have been proposed and may synergistically operate in a given cell. Survivin expression has been associated with cancer, but recent reports suggest that this molecule is also expressed in several immature and mature hematopoietic cells. Here, we provide evidence that treatment of immature neutrophils with anticancer drugs reduced endogenous survivin levels causing apoptosis. The anticancer drugs did not directly target survivin, instead they blocked the activity of phosphatidylinositol-3-OH kinase, which regulated survivin expression and apoptosis in these cells. Strikingly, and in contrast to other cells, this pathway did not involve the serine/threonine kinase c-akt/PKB. Moreover, in combination with anticancer drug therapy, rapamycin did not induce increased myelosuppression in an experimental lymphoma mouse model. These data suggest that drugs that block either c-akt/PKB or signaling molecules located distal to c-akt/PKB may preferentially induce apoptosis of cancer cells as they exhibit no cytotoxicity for immature neutrophils.
Resumo:
Pericyte loss and capillary regression are characteristic for incipient diabetic retinopathy. Pericyte recruitment is involved in vessel maturation, and ligand-receptor systems contributing to pericyte recruitment are survival factors for endothelial cells in pericyte-free in vitro systems. We studied pericyte recruitment in relation to the susceptibility toward hyperoxia-induced vascular remodeling using the pericyte reporter X-LacZ mouse and the mouse model of retinopathy of prematurity (ROP). Pericytes were found in close proximity to vessels, both during formation of the superficial and the deep capillary layers. When exposure of mice to the ROP was delayed by 24 h, i.e., after the deep retinal layer had formed [at postnatal (p) day 8], preretinal neovascularizations were substantially diminished at p18. Mice with a delayed ROP exposure had 50% reduced avascular zones. Formation of the deep capillary layers at p8 was associated with a combined up-regulation of angiopoietin-1 and PDGF-B, while VEGF was almost unchanged during the transition from a susceptible to a resistant capillary network. Inhibition of Tie-2 function either by soluble Tie-2 or by a sulindac analog, an inhibitor of Tie-2 phosphorylation, resensitized retinal vessels to neovascularizations due to a reduction of the deep capillary network. Inhibition of Tie-2 function had no effect on pericyte recruitment. Our data indicate that the final maturation of the retinal vasculature and its resistance to regressive signals such as hyperoxia depend on the completion of the multilayer structure, in particular the deep capillary layers, and are independent of the coverage by pericytes.
Resumo:
PURPOSE: Peptide receptors are frequently overexpressed in human tumors, allowing receptor-targeted scintigraphic imaging and therapy with radiolabeled peptide analogues. Neuropeptide Y (NPY) receptors are new candidates for these applications, based on their high expression in specific cancers. Because NPY receptors are expressed in selected sarcoma cell lines and because novel treatment options are needed for sarcomas, this study assessed the NPY receptor in primary human sarcomas. EXPERIMENTAL DESIGN: Tumor tissues of 88 cases, including Ewing sarcoma family of tumors (ESFT), synovial sarcomas, osteosarcomas, chondrosarcomas, liposarcomas, angiosarcomas, rhabdomyosarcomas, leiomyosarcomas, and desmoid tumors, were investigated for NPY receptor protein with in vitro receptor autoradiography using (125)I-labeled NPY receptor ligands and for NPY receptor mRNA expression with in situ hybridization. RESULTS: ESFT expressed the NPY receptor subtype Y1 on tumor cells in remarkably high incidence (84%) and density (mean, 5,314 dpm/mg tissue). Likewise, synovial sarcomas expressed Y1 on tumor cells in high density (mean, 7,497 dpm/mg; incidence, 40%). The remaining tumors expressed NPY receptor subtypes Y1 or Y2 at lower levels. Moreover, many of the sarcomas showed Y1 expression on intratumoral blood vessels. In situ hybridization for Y1 mRNA confirmed the autoradiography results. CONCLUSIONS: NPY receptors are novel molecular markers for human sarcomas. Y1 may inhibit growth of specific sarcomas, as previously shown in an in vivo mouse model of human ESFT. The high Y1 expression on tumor cells of ESFT and synovial sarcomas and on blood vessels in many other sarcomas represents an attractive basis for an in vivo tumor targeting.
Resumo:
The proinflammatory cytokine IL-6 seems to have an important role in the intestinal inflammation that characterizes inflammatory bowel diseases (IBDs) such as Crohn disease and ulcerative colitis. However, little is known about the molecular mechanisms regulating IL-6 production in IBD. Here, we assessed the role of the transcriptional regulator IFN regulatory factor-4 (IRF4) in this process. Patients with either Crohn disease or ulcerative colitis exhibited increased IRF4 expression in lamina propria CD3+ T cells as compared with control patients. Consistent with IRF4 having a regulatory function in T cells, in a mouse model of IBD whereby colitis is induced in RAG-deficient mice by transplantation with CD4+CD45RB(hi) T cells, adoptive transfer of wild-type but not IRF4-deficient T cells resulted in severe colitis. Furthermore, IRF4-deficient mice were protected from T cell-dependent chronic intestinal inflammation in trinitrobenzene sulfonic acid- and oxazolone-induced colitis. In addition, IRF4-deficient mice with induced colitis had reduced mucosal IL-6 production, and IRF4 was required for IL-6 production by mucosal CD90+ T cells, which it protected from apoptosis. Finally, the protective effect of IRF4 deficiency could be abrogated by systemic administration of either recombinant IL-6 or a combination of soluble IL-6 receptor (sIL-6R) plus IL-6 (hyper-IL-6). Taken together, our data identify IRF4 as a key regulator of mucosal IL-6 production in T cell-dependent experimental colitis and suggest that IRF4 might provide a therapeutic target for IBDs.
Resumo:
Autoantibodies play a key role in diagnostic laboratories as markers of autoimmune diseases. In addition to their role as markers they mediate diverse effects in vivo. Autoantibodies with protective effect have been described. Natural protective IgM autoantibodies against tumour-antigens of malignant cells or their precursors may contribute to increased survival rates of carcinoma patients. In a mouse model of systemic lupus erythematosus it has been shown that anti-dsDNA IgM autoantibodies protect from glomerular damage. In contrast, a direct pathogenic role of autoantibodies has been well established e.g. in myasthenia gravis or in Goodpasture syndrome. Similarly autoantibodies against SSA Ro52 are detrimental in neonatal lupus erythematosus with congenital heart block. Moreover, putatively protective autoantibodies may become pathogenic during the course of the disease such as the onconeuronal autoantibodies whose pathogenicity depends on their compartmentalisation. In patients with paraneoplastic syndromes tumour cells express proteins that are also naturally present in the brain. Anti-tumour autoantibodies which temporarily suppress tumour growth can provoke an autoimmune attack on neurons once having crossed the blood-brain barrier and cause specific neurological symptoms. Only a restricted number of autoantibodies are useful follow-up markers for the effectiveness of treatment in autoimmune diseases. Certain autoantibodies hold prognostic value and appear years or even decades before the diagnosis of disease such as the antimitochondrial antibodies in primary biliary cirrhosis or anti-citrullinated protein (CCP)-antibodies in rheumatoid arthritis. It is crucial to know whether the autoantibodies in question recognise linear or conformational epitopes in order to choose the appropriate detection methods. Indirect immunofluorescence microscopy remains a very useful tool for confirmation of results of commercially available immunoassays and for detection of special and rare autoantibodies that otherwise often remain undetected. Standardisation of autoimmune diagnostics is still underway and requires joint efforts by laboratories, clinicians and industry.
Resumo:
OBJECTIVE: Marfan syndrome is a systemic connective tissue disorder caused by mutations in the fibrillin-1 gene. It was originally believed that Marfan syndrome results exclusively from the production of abnormal fibrillin-1 that leads to structurally weaker connective tissue when incorporated into the extracellular matrix. This effect seemed to explain many of the clinical features of Marfan syndrome, including aortic root dilatation and acute aortic dissection, which represent the main causes of morbidity and mortality in Marfan syndrome. METHODS: Recent molecular studies, most based on genetically defined mouse models of Marfan syndrome, have challenged this paradigm. These studies established the critical contribution of fibrillin-1 haploinsufficiency and dysregulated transforming growth factor-beta signaling to disease progression. RESULTS: It seems that many manifestations of Marfan syndrome are less related to a primary structural deficiency of the tissues than to altered morphogenetic and homeostatic programs that are induced by altered transforming growth factor-beta signaling. Most important, transforming growth factor-beta antagonism, through transforming growth factor-beta neutralizing antibodies or losartan (an angiotensin II type 1 receptor antagonist), has been shown to prevent and possibly reverse aortic root dilatation, mitral valve prolapse, lung disease, and skeletal muscle dysfunction in a mouse model of Marfan syndrome. CONCLUSION: There are indicators that losartan, a drug widely used to treat arterial hypertension in humans, offers the first potential for primary prevention of clinical manifestations in Marfan syndrome.
Resumo:
Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for gamma-radiation biodosimetry in a mouse model. Mice were gamma-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography-time-of-flight mass spectrometry (UPLC-TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and beta-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose-response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to gamma radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans.
Resumo:
Conditioning with granulocyte colony-stimulating factor (G-CSF) promotes liver regeneration in an experimental small-for-size liver remnant mouse model. The mechanisms involved in this extraordinary G-CSF effect are unknown. The aim of this study was to investigate the influence of G-CSF on the hepatic microvasculature in the regenerating liver. The hepatic sinusoidal microvasculature and microarchitecture of the regenerating liver were evaluated by intravital microscopy in mice. Three experimental groups were compared: (1) unoperated unconditioned animals (control; n = 5), (2) animals conditioned with G-CSF 48 h after 60% partial hepatectomy (G-CSF-PH; n = 6), and (3) animals sham conditioned 48 h after 60% PH (sham-PH; n = 6). PH led to hepatocyte hypertrophy and increased hepatic sinusoidal velocity in the sham-PH and G-CSF-PH groups. Increased sinusoidal diameter and increased hepatic blood flow were observed in the G-CSF-PH group compared to the sham-PH and control groups. Furthermore, there was a strong positive correlation between spleen weight and hepatic sinusoidal diameter in the G-CSF-PH group. The increased hepatic blood flow could explain the observed benefit of G-CSF conditioning during liver regeneration. These results elucidate an unexplored aspect of pharmacological modulation of liver regeneration and motivate further experiments.
Resumo:
Transforming growth factor-beta2 (TGF-beta2) stimulates the expression of pro-fibrotic connective tissue growth factor (CTGF) during the course of renal disease. Because sphingosine kinase-1 (SK-1) activity is also upregulated by TGF-beta, we studied its effect on CTGF expression and on the development of renal fibrosis. When TGF-beta2 was added to an immortalized human podocyte cell line we found that it activated the promoter of SK-1, resulting in upregulation of its mRNA and protein expression. Further, depletion of SK-1 by small interfering RNA or its pharmacological inhibition led to accelerated CTGF expression in the podocytes. Over-expression of SK-1 reduced CTGF induction, an effect mediated by intracellular sphingosine-1-phosphate. In vivo, SK-1 expression was also increased in the podocytes of kidney sections of patients with diabetic nephropathy when compared to normal sections of kidney obtained from patients with renal cancer. Similarly, in a mouse model of streptozotocin-induced diabetic nephropathy, SK-1 and CTGF were upregulated in podocytes. In SK-1 deficient mice, exacerbation of disease was detected by increased albuminuria and CTGF expression when compared to wild-type mice. Thus, SK-1 activity has a protective role in the fibrotic process and its deletion or inhibition aggravates fibrotic disease.
Resumo:
Pregnane X receptor (PXR) is an important nuclear receptor xenosensor that regulates the expression of metabolic enzymes and transporters involved in the metabolism of xenobiotics and endobiotics. In this study, ultra-performance liquid chromatography (UPLC) coupled with electrospray time-of-flight mass spectrometry (TOFMS), revealed altered urinary metabolomes in both Pxr-null and wild-type mice treated with the mouse PXR activator pregnenolone 16alpha-carbonitrile (PCN). Multivariate data analysis revealed that PCN significantly attenuated the urinary vitamin E metabolite alpha-carboxyethyl hydroxychroman (CEHC) glucuronide together with a novel metabolite in wild-type but not Pxr-null mice. Deconjugation experiments with beta-glucuronidase and beta-glucosidase suggested that the novel urinary metabolite was gamma-CEHC beta-D-glucoside (Glc). The identity of gamma-CEHC Glc was confirmed by chemical synthesis and by comparing tandem mass fragmentation of the urinary metabolite with the authentic standard. The lower urinary CEHC was likely due to PXR-mediated repression of hepatic sterol carrier protein 2 involved in peroxisomal beta-oxidation of branched-chain fatty acids (BCFA). Using a combination of metabolomic analysis and a genetically modified mouse model, this study revealed that activation of PXR results in attenuated levels of the two vitamin E conjugates, and identification of a novel vitamin E metabolite, gamma-CEHC Glc. Activation of PXR results in attenuated levels of the two vitamin E conjugates that may be useful as biomarkers of PXR activation.
Resumo:
Acute vascular rejection represents a formidable barrier to clinical xenotransplantation and it is known that this type of rejection can also be initiated by xenoreactive antibodies that have limited complement-activating ability. Using a sophisticated mouse model, a recent study has provided in vivo evidence for the existence of an IgG(1)-mediated vascular rejection, which uniquely depends on both the activation of complement and interactions with FcgammaRIII on natural killer (NK) cells.
Resumo:
BACKGROUND: Isolated GH deficiency (IGHD) is familial in 5-30% of patients. The most frequent form (IGHD-IB) has autosomal recessive inheritance, and it is known that it can be caused by mutations in the GHRH receptor (GHRHR) gene or in the GH gene. However, most forms of IGHD-IB have an unknown genetic cause. In normal subjects, muscarinic cholinergic stimulation causes an increase in pituitary GH release, whereas its blockade has the opposite effect, suggesting that a muscarinic acetylcholine receptor (mAchR) is involved in stimulating GH secretion. Five types of mAchR (M(1)-M(5)) exist. A transgenic mouse in which the function of the M(3) receptor was selectively ablated in the central nervous system has isolated GH deficiency similar to animals with defective GHRH or GHRHR gene. OBJECTIVE: We hypothesized that mAchR mutations may cause a subset of familial IGHD. PATIENTS/METHODS: After confirming the expression of M(1)-M(5) receptor mRNA in human hypothalamus, we analyzed the index cases of 39 families with IGHD-IB for mutations in the genes encoding for the five receptors. Coding sequences for each of the five mAchRs were subjected to direct sequencing. RESULTS: In one family, an affected member was homozygous for a M(3) change in codon 65 that replaces valine with isoleucine (V65I). The V65I receptor was expressed in CHO cells where it had normal ability to transmit methacholine signaling. CONCLUSION: mAchR mutations are absent or rare (less than 2.6%) in familial IGHD type IB.