935 resultados para TESTICULAR ATROPHY
Resumo:
Extracellular matrix (ECM) molecules play important roles in the pathobiology of the major human central nervous system (CNS) inflammatory/demyelinating disease multiple sclerosis (MS). This mini-review highlights some recent work on CNS endothelial cell interactions with vascular basement membrane ECM as part of the cellular immune response, and roles for white matter ECM molecules in demyelination and remyelination in MS lesions. Recent basic and clinical investigations of MS emphasize axonal injury, not only in chronic MS plaques, but also in acute lesions; progressive axonal degeneration in normal-appearing white matter also may contribute to brain and spinal cord atrophy in MS patients. Remodeling of the interstitial white matter ECM molecules that affect axon regeneration, however, is incompletely characterized. Our ongoing immunohistochemical studies demonstrate enhanced ECM versican, a neurite and axon growth-inhibiting white matter ECM proteoglycan, and dermatan sulfate proteoglycans at the edges of inflammatory MS lesions. This suggests that enhanced proteoglycan deposition in the ECM and axonal growth inhibition may occur early and are involved in expansion of active lesions. Decreased ECM proteoglycans and their phagocytosis by macrophages along with myelin in plaque centers imply that there is "injury" to the ECM itself. These results indicate that white matter ECM proteoglycan alterations are integral to MS pathology at all disease stages and that they contribute to a CNS ECM that is inhospitable to axon regrowth/regeneration.
Resumo:
We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.
Resumo:
The etiology of functional dyspepsia is not known. The objective of the present study was to determine the characteristics of functional dyspepsia in Western Turkey. We divided 900 patients with functional dyspepsia into three subgroups according to symptoms: ulcer-like (UL), 321 (35.6%), motility disorder-like (ML), 281 (31.2%), and the combination (C) of these symptoms, 298 (33.1%). All patients were submitted to endoscopic evaluation, with two biopsies taken from the cardia and corpus, and four from the antrum of the stomach. All biopsy samples were studied for Helicobacter pylori (Hp) density, chronic inflammation, activity, intestinal metaplasia, atrophy, and the presence of lymphoid aggregates by histological examination. One antral biopsy was used for the rapid urease test. Tissue cagA status was determined by PCR from an antral biopsy specimen by a random sampling method. We also determined the serum levels of tumor necrosis factor-alpha (TNF-alpha) and gastrin by the same method. Data were analyzed statistically by the Kolmogorov-Smirnov test and by analysis of variance. Hp and cagA positivity was significantly higher in the UL subgroup than in the others. The patients in the ML subgroup had the lowest Hp and cagA positivity and Hp density. The ML subgroup also showed the lowest level of Hp-induced inflammation among all subgroups. The serum levels of TNF-alpha and gastrin did not reveal any difference between groups. Our findings show a poor association of Hp with the ML subgroup of functional dyspepsia, but a stronger association with the UL and C subgroups.
Resumo:
Ten Fisher rats 50 to 55 days of age made up the pubertal group, and ten rats 90 to 95 days of age served as the controls. The testicular and epididymal weights and volumes of the pubertal males were lower than those of the controls (P<0.001). There was also a difference in relative epididymal weight (P<0.001). The sperm of pubertal males was morphologically abnormal in 58.2% of cases, as opposed to only 3.8% in the controls (P<0.001). The mean number of spermatozoa in the control group was 11.9 × 10(6)/ml and their viability was 99.6%, while these values could not be determined for pubertal rats. Serum testosterone was higher in the pubertal animals than in the controls (2.52 ± 1.46 vs 0.92 ± 0.34 nM, P<0.01). The ovaries of control females were heavier than those of pubertal females (P<0.001) but there was no difference in their relative weights. Serum estradiol was similar in both groups (75.5 ± 12.8 vs 81.8 ± 14.7 nM, P>0.05). At the beginning of gestation, the pubertal dams weighed less than the controls (P<0.001) but following uterectomy the body weights were equal. Pubertal dams delivered fewer pups than the controls (8.1 ± 2.5 vs 10.4 ± 1.3, P<0.05). There was no difference in the body weights of their offspring or in the weights of their placentas. The results suggest that, in contrast to their female counterparts, pubertal male rats are not fully mature and have not reached complete reproductive capacity at 50-55 days of age.
Resumo:
Mesial temporal lobe epilepsy (MTLE) is associated with hippocampal atrophy and hippocampal signal abnormalities. In our series of familial MTLE (FMTLE), we found a high proportion of hippocampal abnormalities. To quantify signal abnormalities in patients with FMTLE we studied 152 individuals (46 of them asymptomatic) with FMTLE. We used NIH-Image® for volumetry and signal quantification in coronal T1 inversion recovery and T2 for all cross-sections of the hippocampus. Values diverging by 2 or more SD from the control mean were considered abnormal. T2 hippocampal signal abnormalities were found in 52% of all individuals: 54% of affected subjects and 48% of asymptomatic subjects. T1 hippocampal signal changes were found in 34% of all individuals: 42.5% of affected subjects and 15% of asymptomatic subjects. Analysis of the hippocampal head (first three slices) revealed T2 abnormalities in 73% of all individuals (74% of affected subjects and 72% of asymptomatic subjects) and T1 abnormalities in 59% (67% of affected subjects and 41% of asymptomatic subjects). Affected individuals had smaller volumes than controls (P < 0.0001). There was no difference in hippocampal volumes between asymptomatic subjects and controls, although 39% of asymptomatic patients had hippocampal atrophy. Patients with an abnormal hippocampal signal (133 individuals) had smaller ipsilateral volume, but no linear correlation could be determined. Hippocampal signal abnormalities in FMTLE were more frequently found in the hippocampal head in both affected and asymptomatic family members, including those with normal volumes. These results indicate that subtle abnormalities leading to an abnormal hippocampal signal in FMTLE are not necessarily related to seizures and may be determined by genetic factors.
Effect of one stretch a week applied to the immobilized soleus muscle on rat muscle fiber morphology
Resumo:
We determined the effect of stretching applied once a week to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Twenty-six male Wistar rats weighing 269 ± 26 g were divided into three groups. Group I, the left soleus was immobilized in the shortened position for 3 weeks; group II, the soleus was immobilized in the shortened position and stretched once a week for 3 weeks; group III, the soleus was submitted only to stretching once a week for 3 weeks. The medial part of the soleus muscle was frozen for histology and muscle fiber area evaluation and the lateral part was used for the determination of number and length of serial sarcomeres. Soleus muscle submitted only to immobilization showed a reduction in weight (44 ± 6%, P = 0.002), in serial sarcomere number (23 ± 15%) and in cross-sectional area of the fibers (37 ± 31%, P < 0.001) compared to the contralateral muscles. The muscle that was immobilized and stretched showed less muscle fiber atrophy than the muscles only immobilized (P < 0.05). Surprisingly, in the muscles submitted only to stretching, fiber area was decreased compared to the contralateral muscle (2548 ± 659 vs 2961 ± 806 µm², respectively, P < 0.05). In conclusion, stretching applied once a week for 40 min to the soleus muscle immobilized in the shortened position was not sufficient to prevent the reduction of muscle weight and of serial sarcomere number, but provided significant protection against muscle fiber atrophy. In contrast, stretching normal muscles once a week caused a reduction in muscle fiber area.
Resumo:
The spinal muscular atrophies (SMA) or hereditary motor neuronopathies result from the continuous degeneration and death of spinal cord lower motor neurons, leading to progressive muscular weakness and atrophy. We describe a large Brazilian family exhibiting an extremely rare, late-onset, dominant, proximal, and progressive SMA accompanied by very unusual manifestations, such as an abnormal sweating pattern, and gastrointestinal and sexual dysfunctions, suggesting concomitant involvement of the autonomic nervous system. We propose a new disease category for this disorder, `hereditary motor and autonomic neuronopathy', and attribute the term, `survival of motor and autonomic neurons 1' (SMAN1) to the respective locus that was mapped to a 14.5 cM region on chromosome 20q13.2-13.3 by genetic linkage analysis and haplotype studies using microsatellite polymorphic markers. This locus lies between markers D20S120 and D20S173 showing a maximum LOD score of 4.6 at D20S171, defining a region with 33 known genes, including several potential candidates. Identifying the SMAN1 gene should not only improve our understanding of the molecular mechanisms underlying lower motor neuron diseases but also help to clarify the relationship between motor and autonomic neurons.
Resumo:
The aim of the present study was to determine the effect of stretching applied every 3 days to the soleus muscle immobilized in the shortened position on muscle fiber morphology. Eighteen 16-week-old Wistar rats were used and divided into three groups of 6 animals each: a) the left soleus muscle was immobilized in the shortened position for 3 weeks; b) during immobilization, the soleus was stretched for 40 min every 3 days; c) the non-immobilized soleus was only stretched. Left and right soleus muscles were examined. One portion of the soleus was frozen for histology and muscle fiber area evaluation, while the other portion was used to identify the number and length of serial sarcomeres. Immobilized muscles (group A) showed a significant decrease in weight (44 ± 6%), length (19 ± 7%), serial sarcomere number (23 ± 15%), and fiber area (37 ± 31%) compared to the contralateral muscles (P < 0.05, paired Student t-test). The immobilized and stretched soleus (group B) showed a similar reduction but milder muscle fiber atrophy compared to the only immobilized group (22 ± 40 vs 37 ± 31%, respectively; P < 0.001, ANOVA test). Muscles submitted only to stretching (group C) significantly increased the length (5 ± 2%), serial sarcomere number (4 ± 4%), and fiber area (16 ± 44%) compared to the contralateral muscles (P < 0.05, paired Student t-test). In conclusion, stretching applied every 3 days to immobilized muscles did not prevent the muscle shortening, but reduced muscle atrophy. Stretching sessions induced hypertrophic effects in the control muscles. These results support the use of muscle stretching in sports and rehabilitation.
Resumo:
In the present study we determined the efficacy of the measurement of fecal cortisol and androgen metabolite concentrations to monitor adrenal and testicular activity in the jaguar (Panthera onca). Three captive male jaguars were chemically restrained and electroejaculated once or twice within a period of two months. Fecal samples were collected daily for 5 days before and 5 days after the procedure and stored at -20ºC until extraction. Variations in the concentrations of cortisol and androgen metabolites before and after the procedure were determined by solid phase cortisol and testosterone radioimmunoassay and feces dry weight was determined by drying at 37ºC for 24 h under vacuum. On four occasions, fecal cortisol metabolite levels were elevated above baseline (307.8 ± 17.5 ng/g dry feces) in the first fecal sample collected after the procedure (100 to 350% above baseline). On one occasion, we did not detect any variation. Mean (± SEM) fecal androgen concentration did not change after chemical restraint and electroejaculation (before: 131.1 ± 26.7, after: 213.7 ± 43.6 ng/g dry feces). These data show that determination of fecal cortisol and androgen metabolites can be very useful for a noninvasive assessment of animal well-being and as a complement to behavioral, physiological, and pathological studies. It can also be useful for the study of the relationship between adrenal activity and reproductive performance in the jaguar.
Resumo:
The WT1 transcription factor regulates SRY expression during the initial steps of the sex determination process in humans, activating a gene cascade leading to testis differentiation. In addition to causing Wilms' tumor, mutations in WT1 are often responsible for urogenital defects in men, while SRY mutations are mainly related to 46,XY pure gonadal dysgenesis. In order to evaluate their role in abnormal testicular organogenesis, we screened for SRY and WT1 gene mutations in 10 children with XY partial gonadal dysgenesis, 2 of whom with a history of Wilms' tumor. The open reading frame and 360 bp of the 5' flanking sequence of the SRY gene, and the ten exons and intron boundaries of the WT1 gene were amplified by PCR of genomic DNA. Single-strand conformation polymorphism was initially used for WT1 mutation screening. Since shifts in fragment migration were only observed for intron/exon 4, the ten WT1 exons from all patients were sequenced manually. No mutations were detected in the SRY 5' untranslated region or within SRY open-reading frame sequences. WT1 sequencing revealed one missense mutation (D396N) in the ninth exon of a patient who also had Wilms' tumor. In addition, two silent point mutations were found in the first exon including one described here for the first time. Some non-coding sequence variations were detected, representing one new (IVS4+85A>G) and two already described (-7ATG T>G, IVS9-49 T>C) single nucleotide polymorphisms. Therefore, mutations in two major genes required for gonadal development, SRY and WT1, are not responsible for XY partial gonadal dysgenesis.
Resumo:
Amyotrophic lateral sclerosis (ALS), a neurodegenerative disease of unknown etiology, affects motor neurons leading to atrophy of skeletal muscles, paralysis and death. There is evidence for the accumulation of neurofilaments (NF) in motor neurons of the spinal cord in ALS cases. NF are major structural elements of the neuronal cytoskeleton. They play an important role in cell architecture and differentiation and in the determination and maintenance of fiber caliber. They are composed of three different polypeptides: light (NF-L), medium (NF-M) and heavy (NF-H) subunits. In the present study, we performed a morphological and quantitative immunohistochemical analysis to evaluate the accumulation of NF and the presence of each subunit in control and ALS cases. Spinal cords from patients without neurological disease and from ALS patients were obtained at autopsy. In all ALS cases there was a marked loss of motor neurons, besides atrophic neurons and preserved neurons with cytoplasmic inclusions, and extensive gliosis. In control cases, the immunoreaction in the cytoplasm of neurons was weak for phosphorylated NF-H, strong for NF-M and weak for NF-L. In ALS cases, anterior horn neurons showed intense immunoreactivity in focal regions of neuronal perikarya for all subunits, although the difference in the integrated optical density was statistically significant only for NF-H. Furthermore, we also observed dilated axons (spheroids), which were immunopositive for NF-H but negative for NF-M and NF-L. In conclusion, we present qualitative and quantitative evidence of NF-H subunit accumulation in neuronal perikarya and spheroids, which suggests a possible role of this subunit in the pathogenesis of ALS.
Resumo:
The objective of the present investigation was to perform a 14-day time-course study of treatment with salbutamol, a ß2 adrenoceptor agonist, on rat soleus muscle in order to assess fiber type selectivity in the hypertrophic response and fiber type composition. Male Wistar rats were divided into four groups: control (N = 10), treated with salbutamol (N = 30), denervated (N = 30), and treated with salbutamol after denervation (N = 30). Salbutamol was injected intraperitoneally in the rats of the 2nd and 4th groups at a concentration of 0.3 mg/kg twice a day for 2 weeks. The muscles were denervated using the crush method with pean. The animals were sacrificed 3, 6, 9, 12, and 14 days after treatment. Frozen cross-sections of soleus muscle were stained for myosin ATPase, pH 9.4. Cross-sectional area and percent of muscle fibers were analyzed morphometrically by computerized image analysis. Treatment with salbutamol induced hypertrophy of all fiber types and a higher percentage of type II fibers (21%) in the healthy rat soleus muscle. Denervation caused marked atrophy of all fibers and conversion from type I to type II muscle fibers. Denervated muscles treated with salbutamol showed a significantly larger cross-sectional area of type I muscle fibers, 28.2% compared to the denervated untreated muscle. Moreover, the number of type I fibers was increased. These results indicate that administration of salbutamol is able to induce changes in cross-sectional area and fiber type distribution in the early phase of treatment. Since denervation-induced atrophy and conversion from type I to type II fibers were improved by salbutamol treatment we propose that salbutamol, like other ß2 adrenoceptor agonists, may have a therapeutic potential in improving the condition of skeletal muscle after denervation.
Resumo:
The objective of the present study was to determine the frequency of somatic chromosomal anomalies and Y chromosomal microdeletions (azoospermia factor genes, AZF) in infertile males who seek assisted reproduction. These studies are very important because the assisted reproduction techniques (mainly intracytoplasmic sperm injection) bypass the natural selection process and some classical chromosomal abnormalities, microdeletions of AZF genes or some deleterious genic mutations could pass through generations. These genetic abnormalities can cause in the offspring of these patients male infertility, ambiguous external genitalia, mental retardation, and other birth defects. We studied 165 infertile men whose infertility was attributable to testicular problems (60 were azoospermic, 100 were oligospermic and 5 were asthenospermic). We studied 100 metaphases per patient with GTG banding obtained from temporary lymphocyte culture for chromosomal abnormality detection and performed a genomic DNA analysis using 28 Y chromosome-specific sequence-tagged sites for Y AZF microdeletion detection. Karyotyping revealed somatic anomalies in 16 subjects (16/165 = 9.6%). Of these 16, 12 were in the azoospermic group (12/60 = 20%) and 4 were in the oligospermic group (4/100 = 4%). The most common chromosomal anomaly was Klinefelter syndrome (10/165 = 6%). Microdeletions of AZF genes were detected in 12 subjects (12/160 = 7.5%). The frequencies detected are similar to those described previously. These results show the importance of genetic evaluation of infertile males prior to assisted reproduction. Such evaluation can lead to genetic counseling and, consequently, to primary and secondary prevention of mental retardation and birth defects.
Resumo:
Leber's hereditary optic neuropathy (LHON) is a maternally inherited form of retinal ganglion cell degeneration leading to optic atrophy in young adults. Several mutations in different genes can cause LHON (heterogeneity). The ND6 gene is one of the mitochondrial genes that encodes subunit 6 of complex I of the respiratory chain. This gene is a hot spot gene. Fourteen Persian LHON patients were analyzed with single-strand conformational polymorphism and DNA sequencing techniques. None of these patients had four primary mutations, G3460A, G11788A, T14484C, and G14459A, related to this disease. We identified twelve nucleotide substitutions, G13702C, T13879C, T14110C, C14167T, G14199T, A14233G, G14272C, A14290G, G14365C, G14368C, T14766C, and T14798C. Eleven of twelve nucleotide substitutions had already been reported as polymorphism. One of the nucleotide substitutions (A14290G) has not been reported. The A14290G nucleotide substitution does not change its amino acid (glutamic acid). We looked for base conservation using DNA star software (MEGALIGN program) as a criterion for pathogenic or nonpathogenic nucleotide substitution in A14290G. The results of ND6 gene alignment in humans and in other species (mouse, cow, elegans worm, and Neurospora crassa mold) revealed that the 14290th base was not conserved. Fifty normal controls were also investigated for this polymorphism in the Iranian population and two had A14290G polymorphism (4%). This study provides evidence that the mtDNA A14290G allele is a new nonpathogenic polymorphism. We suggest follow-up studies regarding this polymorphism in different populations.
Resumo:
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system CNS), where inflammation and neurodegeneration lead to irreversible neuronal damage. In MS, a dysfunctional immune system causes auto‐reactive lymphocytes to migrate into CNS where they initiate an inflammatory cascade leading to focal demyelination, axonal degeneration and neuronal loss. One of the hallmarks of neuronal injury and neuroinflammation is the activation of microglia. Activated microglia are found not only in the focal inflammatory lesions, but also diffusely in the normal‐appearing white matter (NAWM), especially in progressive MS. The purine base, adenosine is a ubiquitous neuromodulator in the CNS and also participates in the regulation of inflammation. The effect of adenosine mediated via adenosine A2A receptors has been linked to microglial activation, whereas modulating A2A receptors may exert neuroprotective effects. In the majority of patients, MS presents with a relapsing disease course, later advancing to a progressive phase characterised by a worsening, irreversible disability. Disease modifying treatments can reduce the severity and progression in relapsing MS, but no efficient treatment exists for progressive MS. The aim of this research was to investigate the prevalence of adenosine A2A receptors and activated microglia in progressive MS by using in vivo positron emission tomography (PET) imaging and [11C]TMSX and [11C](R)‐PK11195 radioligands. Magnetic resonance imaging (MRI) with diffusion tensor imaging (DTI) was performed to evaluate structural brain damage. Non‐invasive input function methods were also developed for the analyses of [11C]TMSX PET data. Finally, histopathological correlates of [11C](R)‐PK11195 radioligand binding related to chronic MS lesions were investigated in post‐mortem samples of progressive MS brain using autoradiography and immunohistochemistry. [11C]TMSX binding to A2A receptors was increased in NAWM of secondary progressive MS (SPMS) patients when compared to healthy controls, and this correlated to more severe atrophy in MRI and white matter disintegration (reduced fractional anisotropy, FA) in DTI. The non‐invasive input function methods appeared as feasible options for brain [11C]TMSX images obviating arterial blood sampling. [11C](R)‐PK11195 uptake was increased in the NAWM of SPMS patients when compared to patients with relapsing MS and healthy controls. Higher [11C](R)‐PK11195 binding in NAWM and total perilesional area of T1 hypointense lesions was associated with more severe clinical disability, increased brain atrophy, higher lesion load and reduced FA in NAWM in the MS patients. In autoradiography, increased perilesional [11C](R)‐PK11195 uptake was associated with increased microglial activation identified using immunohistochemistry. In conclusion, brain [11C]TMSX PET imaging holds promise in the evaluation of diffuse neuroinflammation in progressive MS. Being a marker of microglial activation, [11C](R)‐ PK11195 PET imaging could possibly be used as a surrogate biomarker in the evaluation of the neuroinflammatory burden and clinical disease severity in progressive MS.