884 resultados para Synthetic cannabinoids


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ceramide (a sphingolipid) and reactive oxygen species (ROS) are each partly responsible for the intracellular signal transduction of a variety of physiological, pharmacological or environmental agents. It has been reported that synthesis of ceramide and ROS are intimately linked, and show reciprocal regulation. The levels of ceramide are reported to be elevated in atherosclerotic plaques providing circumstantial evidence for a pro-atherogenic role for ceramide. Indeed, LDL may be important sources of ceramide from sphingomyelin, where it promotes LDL aggregation. Using synthetic, short chain ceramides to mimic the cellular responses to fluctuations in natural endogenous ceramides, we have investigated ceramide effects on both intracellular redox state (as glutathione and ROS) and redox-sensitive gene expression, specifically the scavenger receptor CD36 (using RT-PCR and flow cytometry), in U937 monocytes and macrophages. We describe that the principal redox altering properties of ceramide are to lower cytosolic peroxide and to increase mitochondrial ROS formation, where growth arrest of U937 monocytes is also observed. In addition, cellular glutathione was depleted, which was independent of an increase in glutathione peroxidase activity. Examination of the effects of ceramide on stress induced CD36 expression in macrophages, revealed a dose dependent reduction in CD36 mRNA and protein levels, which was mimicked by N-acetyl cysteine. Taken together, these data suggest that ceramides differentially affect ROS within different cellular compartments, and that loss of cytosolic peroxide inhibits expression of the redox sensitive gene, CD36. This may attenuate both the uptake of oxidised LDL and the interaction of HDL with macrophages. The resulting sequelae in vivo remain to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) and ceramide are each partly responsible for the signal transduction of a variety of extracellular agents. Furthermore, the application of synthetic, short-chain ceramides mimics the cellular responses to these extracellular agents. However, the significance of ROS involvement in ceramide signaling pathways is poorly understood. Here we describe that the (cellular responses to C2-/C6-ceramide of growth arrest in U937 monocytes and apoptosis in Jurkat T-cells are preceded by a rise in mitochondrial peroxide production. In Jurkat T-cells, this is associated with a large time- and dose-dependent loss of cellular glutathione. However, in U937 monocytes, glutathione loss is transient. Differences in the magnitude and kinetics of this alteration in cellular redox state associate with discrete outcomes, namely growth arrest or apoptosis. © 2002 Elsevier Science (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The naturally occurring reactive electrophilic species 12-oxo-phytodienoic acid (12-oxo-PDA) is a potent antifungal agent, whereas the plant growth regulator jasmonic acid, which is synthesized from 12-oxo-PDA, is ineffective. To address what structural features of the molecule endow it with antifungal activity, we synthesized a series of molecular mimics of 12-oxo-PDA varying in the length of the alkyl chain at its C-4 ring position. The octyl analogue (4-octyl cyclopentenone) was the most effective at suppressing spore germination and subsequent mycelial growth of a range of fungal pathogens and was particularly effective against Cladosporium herbarum and Botrytis cinerea, with minimum fungicidal concentrations in the range 100-200 µM. Introduction of a carboxyl group to the end of the chain, mimicking natural fatty acids, markedly reduced antifungal efficacy. Electrolyte leakage, indicative of membrane perturbation, was evident in both C. herbarum and B. cinerea exposed to 4-octyl cyclopentenone. Lipid composition analysis of the fungal spores revealed that those species with a high oil content, namely Fusarium oxysporum and Alternaria brassicicola, were less sensitive to 4-octyl cyclopentenone. The comparable hydrophobicity of 4-octyl cyclopentenone and 12-oxo-PDA accounts for the similar spore suppression activity of these two compounds. The relative ease of synthesis of 4-octyl cyclopentenone makes it an attractive compound for potential use as an antifungal agent. © 2011 SGM.