927 resultados para Sympathetic ganglia
Resumo:
Malignant pheochromocytomas (PCCs) and paragangliomas (PGLs) are rare disorders arising from the adrenal gland, from the glomera along parasympathetic nerves or from paraganglia along the sympathetic trunk. According to the WHO classification, malignancy of PCCs and PGLs is defined by the presence of metastases at non-chromaffin sites distant from that of the primary tumor and not by local invasion. The overall prognosis of metastasized PCCs/PGLs is poor. Surgery offers currently the only change of cure. Preferably, the discrimination between malignant and benign PCCs/PGLs should be made preoperatively.
Resumo:
Music consists of sound sequences that require integration over time. As we become familiar with music, associations between notes, melodies, and entire symphonic movements become stronger and more complex. These associations can become so tight that, for example, hearing the end of one album track can elicit a robust image of the upcoming track while anticipating it in total silence. Here, we study this predictive “anticipatory imagery” at various stages throughout learning and investigate activity changes in corresponding neural structures using functional magnetic resonance imaging. Anticipatory imagery (in silence) for highly familiar naturalistic music was accompanied by pronounced activity in rostral prefrontal cortex (PFC) and premotor areas. Examining changes in the neural bases of anticipatory imagery during two stages of learning conditional associations between simple melodies, however, demonstrates the importance of fronto-striatal connections, consistent with a role of the basal ganglia in “training” frontal cortex (Pasupathy and Miller, 2005). Another striking change in neural resources during learning was a shift between caudal PFC earlier to rostral PFC later in learning. Our findings regarding musical anticipation and sound sequence learning are highly compatible with studies of motor sequence learning, suggesting common predictive mechanisms in both domains.
Resumo:
The striatum, the major input nucleus of the basal ganglia, is numerically dominated by a single class of principal neurons, the GABAergic spiny projection neuron (SPN) that has been extensively studied both in vitro and in vivo. Much less is known about the sparsely distributed interneurons, principally the cholinergic interneuron (CIN) and the GABAergic fast-spiking interneuron (FSI). Here, we summarize results from two recent studies on these interneurons where we used in vivo intracellular recording techniques in urethane-anaesthetized rats (Schulz et al., J Neurosci 31[31], 2011; J Physiol, in press). Interneurons were identified by their characteristic responses to intracellular current steps and spike waveforms. Spontaneous spiking contained a high proportion (~45%) of short inter-spike intervals (ISI) of <30 ms in FSIs, but virtually none in CINs. Spiking patterns in CINs covered a broad spectrum ranging from regular tonic spiking to phasic activity despite very similar unimodal membrane potential distributions across neurons. In general, phasic spiking activity occurred in phase with the slow ECoG waves, whereas CINs exhibiting tonic regular spiking were little affected by afferent network activity. In contrast, FSIs exhibited transitions between Down and Up states very similar to SPNs. Compared to SPNs, the FSI Up state membrane potential was noisier and power spectra exhibited significantly larger power at frequencies in the gamma range (55-95 Hz). Cortical-evoked inputs had faster dynamics in FSIs than SPNs and the membrane potential preceding spontaneous spike discharge exhibited short and steep trajectories, suggesting that fast input components controlled spike output in FSIs. Intrinsic resonance mechanisms may have further enhanced the sensitivity of FSIs to fast oscillatory inputs. Induction of an activated ECoG state by local ejection of bicuculline into the superior colliculus, resulted in increased spike frequency in both interneuron classes without changing the overall distribution of ISIs. This manipulation also made CINs responsive to a light flashed into the contralateral eye. Typically, the response consisted of an excitation at short latency followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. These results highlight the differential sensitivity of striatal interneurons to afferent synaptic signals and support a model where CINs modulate the striatal network in response to salient sensory bottom-up signals, while FSIs serve gating of top-down signals from the cortex during action selection and reward-related learning.
Resumo:
Veteran endurance athletes have an increased risk of developing atrial fibrillation (AF), with a striking male predominance. We hypothesized that male athletes were more prone to atrial and ventricular remodeling and investigated the signal-averaged P wave and factors that promote the occurrence of AF. Nonelite athletes scheduled to participate in the 2010 Grand Prix of Bern, a 10-mile race, were invited. Of the 873 marathon and nonmarathon runners who were willing to participate, 68 female and 70 male athletes were randomly selected. The runners with cardiovascular disease or elevated blood pressure (>140/90 mm Hg) were excluded. Thus, 121 athletes were entered into the final analysis. Their mean age was 42 ± 7 years. No gender differences were found for age, lifetime training hours, or race time. The male athletes had a significantly longer signal-averaged P-wave duration (136 ± 12 vs 122 ± 10 ms; p <0.001). The left atrial volume was larger in the male athletes (56 ± 13 vs 49 ± 10 ml; p = 0.001), while left atrial volume index showed no differences (29 ± 7 vs 30 ± 6 ml/m²; p = 0.332). In male athletes, the left ventricular mass index (107 ± 17 vs 86 ± 16 g/m²; p <0.001) and relative wall thickness (0.44 ± 0.06 vs 0.41 ± 0.07; p = 0.004) were greater. No differences were found in the left ventricular ejection fraction (63 ± 4% vs 66 ± 6%; p = 0.112) and mitral annular tissue Doppler e' velocity (10.9 ± 1.5 vs 10.6 ± 1.5 cm/s; p = 0.187). However, the tissue Doppler a' velocity was higher (8.7 ± 1.2 vs 7.6 ± 1.3 cm/s; p < 0.001) in the male athletes. Male athletes had a higher systolic blood pressure at rest (123 ± 9 vs 110 ± 11 mm Hg; p < 0.001) and at peak exercise (180 ± 15 vs 169 ± 19 mm Hg; p = 0.001). In the frequency domain analysis of heart rate variability, the sympatho-vagal balance, represented by the low/high-frequency power ratio, was significantly greater in male athletes (5.8 ± 2.8 vs 3.9 ± 1.9; p < 0.001). Four athletes (3.3%) had at least one documented episode of paroxysmal AF, all were men (p = 0.042). In conclusion, for a comparable amount of training and performance, male athletes showed a more pronounced atrial remodeling, a concentric type of ventricular remodeling, and an altered diastolic function. A higher blood pressure at rest and during exercise and a higher sympathetic tone might be causal. The altered left atrial substrate might facilitate the occurrence of AF.
Resumo:
We present 3 cases of a 12-year-old boy, an 8-year-old girl, and a 9-year-old boy with progressive paresis of the peroneal nerve. Peroneal intraneural ganglia are a rare cause of paralysis of the lower limb in children; more often these symptoms occur because of exostosis. Ultrasound imaging in both patients showed a cystic mass near the fibular neck. Magnetic resonance imaging examination revealed that the ganglion is communicating with the proximal tibiofibular joint. Surgical exploration in these patients confirmed a cystic formation involving the common peroneal nerve. The ganglion originates from the articular nerve branch to the proximal tibiofibular joint. Total recovery of nerve function was seen 2 years later for the first patient, whereas the other 2 showed immediate postoperative improvement of peroneal nerve function and complete recovery within 6 to 8 weeks. On the other hand, patients with exostosis showed varying outcomes. In children with symptoms suspicious of nerve compression, fast diagnosis and immediate treatment are necessary to ensure the best possible recovery.
Resumo:
Splanchnic vasodilation triggers the development of the hyperdynamic circulatory syndrome in portal hypertension. Neuropeptide Y (NPY), a sympathetic co-transmitter of norepinephrine, improves contractility in mesenteric arteries of pre-hepatic portal hypertensive rats. Therefore, we investigated the effect of NPY on mesenteric arterial contractility in vitro and in vivo in cirrhotic ascitic rats, as well as the vasoactive pathways involved.
Resumo:
Stress and depressive symptoms have been associated with impaired endothelial function as measured by brachial artery flow-mediated dilation (FMD), possibly through repeated and heightened activation of the sympathetic nervous system. Behavioral correlates of depression, such as satisfaction with leisure activities (i.e., leisure satisfaction), may also be associated with endothelial function via their association with depressive symptoms. This study examined the longitudinal associations between stress, depressive symptoms, leisure satisfaction, and endothelial function as measured by FMD.
Resumo:
Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen healthy volunteers (eight men and nine women, mean age ± standard deviation 35.6 ± 12.7 years) were enrolled in the study. Each subject was measured three times on different days with the different types of recitation: hexameter, alliteration, and prose verse. Before, during, and after recitation, relative concentration changes of oxyhemoglobin (Δ[O2Hb]), deoxyhemoglobin (Δ[HHb]), total hemoglobin (Δ[tHb]), and tissue oxygenation saturation (StO2) were measured in the brain and skeletal leg muscle using a NIRS device. The study was performed with a randomized crossover design. Significant concentration changes were found during recitation of all verses, with mainly a decrease in Δ[O2Hb] and ΔStO2 in the brain, and an increase in Δ[O2Hb] and Δ[tHb] in the leg muscle during recitation. After the recitations, significant changes were mainly increases of Δ[HHb] and Δ[tHb] in the calf muscle. The Mayer wave spectral power (MWP) was also significantly affected, i.e., mainly the MWP of the Δ[O2Hb] and Δ[tHb] increased in the brain during recitation of hexameter and prose verse. The changes in MWP were also significantly different between hexameter and alliteration, and hexameter and prose. Possible physiological explanations for these changes are discussed. A probable reason is a different effect of recitations on the sympathetic nervous system. In conclusion, these changes show that AST has relevant effects on the hemodynamics and oxygenation of the brain and muscle.
Resumo:
AIM: To investigate the expression of E-cadherin, a major host cell receptor for Listeria monocytogenes (LM) internalin A, in the ruminant nervous system and its putative role in brainstem invasion and intracerebral spread of LM in the natural disease. METHODS: Immunohistochemistry and double immunofluorescence was performed on brains, cranial nerves and ganglia of ruminants with and without natural LM rhombencephalitis using antibodies against E-cadherin, protein gene product 9.5, myelin-associated glycoprotein and LM. RESULTS: In the ruminant brain, E-cadherin is expressed in choroid plexus epithelium, meningothelium and restricted neuropil areas of the medulla, but not in the endothelium. In cranial nerves and ganglia, E-cadherin is expressed in satellite cells and myelinating Schwann cells. Expression does not differ between ruminants with or without listeriosis and does not overlap with the presence of microabscesses in the medulla. LM is observed in phagocytes, axons, Schwann cells, satellite cells and ganglionic neurones. CONCLUSION: Our results support the view that the specific ligand-receptor interaction between LM and host E-cadherin is involved in the neuropathogenesis of ruminant listeriosis. They suggest that oral epithelium and Schwann cells expressing E-cadherin provide a port of entry for free bacteria offering a site of primary intracellular replication, from where the bacterium may invade the axonal compartment by cell-to-cell spread. As E-cadherin expression in the ruminant central nervous system is weak, only very locally restricted and not related to the presence of microabscesses, it is likely that further intracerebral spread is independent of E-cadherin and relies primarily on axonal spread.
Resumo:
BACKGROUND:: The interaction of sevoflurane and opioids can be described by response surface modeling using the hierarchical model. We expanded this for combined administration of sevoflurane, opioids, and 66 vol.% nitrous oxide (N2O), using historical data on the motor and hemodynamic responsiveness to incision, the minimal alveolar concentration, and minimal alveolar concentration to block autonomic reflexes to nociceptive stimuli, respectively. METHODS:: Four potential actions of 66 vol.% N2O were postulated: (1) N2O is equivalent to A ng/ml of fentanyl (additive); (2) N2O reduces C50 of fentanyl by factor B; (3) N2O is equivalent to X vol.% of sevoflurane (additive); (4) N2O reduces C50 of sevoflurane by factor Y. These four actions, and all combinations, were fitted on the data using NONMEM (version VI, Icon Development Solutions, Ellicott City, MD), assuming identical interaction parameters (A, B, X, Y) for movement and sympathetic responses. RESULTS:: Sixty-six volume percentage nitrous oxide evokes an additive effect corresponding to 0.27 ng/ml fentanyl (A) with an additive effect corresponding to 0.54 vol.% sevoflurane (X). Parameters B and Y did not improve the fit. CONCLUSION:: The effect of nitrous oxide can be incorporated into the hierarchical interaction model with a simple extension. The model can be used to predict the probability of movement and sympathetic responses during sevoflurane anesthesia taking into account interactions with opioids and 66 vol.% N2O.
Resumo:
Ritalin® (methylphenidate) is an amphetamine-like prescription stimulant commonly used in the treatment of attention deficit hyperactivity disorder in children and adults. Recently, the recreational use of Ritalin has increased, particularly among young adults. Well-known symptoms of intoxication include signs of sympathetic nervous stimulation, such as agitation, anxiety, tachycardia, hypertension, headache, tremor, and dizziness. This case report describes oral dyskinesia as a rare presentation of Ritalin intoxication, with the review of pathophysiology and some epidemiological data.
Resumo:
Glial cell line-derived neurotrophic factor (GDNF) increases survival and neurite extension of spiral ganglion neurons (SGNs), the primary neurons of the auditory system, via yet unknown signaling mechanisms. In other cell types, signaling is achieved by the GPI-linked GDNF family receptor α1 (GFRα1) via recruitment of transmembrane receptors: Ret (re-arranged during transformation) and/or NCAM (neural cell adhesion molecule). Here we show that GDNF enhances neuritogenesis in organotypic cultures of spiral ganglia from 5-day-old rats and mice. Addition of GFRα1-Fc increases this effect. GDNF/GFRα1-Fc stimulation activates intracellular PI3K/Akt and MEK/Erk signaling cascades as detected by Western blot analysis of cultures prepared from rats at postnatal days 5 (P5, before the onset of hearing) and 20 (P20, after the onset of hearing). Both cascades mediate GDNF stimulation of neuritogenesis, since application of the Akt inhibitor Wortmannin or the Erk inhibitor U0126 abolished GDNF/GFRα1-Fc stimulated neuritogenesis in P5 rats. Since cultures of P5 NCAM-deficient mice failed to respond by neuritogenesis to GDNF/GFRα1-Fc, we conclude that NCAM serves as a receptor for GDNF signaling responsible for neuritogenesis in early postnatal spiral ganglion.
Resumo:
Nitric oxide (NO) regulates arterial pressure by modulating peripheral vascular tone and sympathetic vasoconstrictor outflow. NO synthesis is impaired in several major cardiovascular disease states. Loss of NO-induced vasodilator tone and restraint on sympathetic outflow could result in exaggerated pressor responses to mental stress.
Resumo:
Classical schizophrenia literature reports motor symptoms as characteristic of the disorder. After the introduction of neuroleptic drugs, the existence of genuine motor disorders was challenged. Renewed interest arose as symptoms were found in never-medicated patients. Reports focused on abnormal involuntary movements, parkinsonism, neurological soft signs, catatonia, negative symptoms, or psychomotor slowing. Since these syndromes refer to different concepts, however, the definitions are not congruent and the symptoms overlap. The prevalence rates of motor symptoms in schizophrenia are surprisingly high, and recent studies indicate a possible pathobiology. In particular, the development and maturation of the human motor system appears to be closely linked to the emergence of motor symptoms observed in schizophrenia. Post-mortem and neuroimaging results demonstrated aberrant structure and function of premotor and motor cortices, basal ganglia, thalamus, and the connecting white matter tracts. Animal models have focused on aberrant neurotransmission and genetic contributions. Findings of localized abnormal oligodendrocyte function and myelination point to the special role of the white matter in schizophrenia, and recent studies specifically found an association between motor abnormalities and white matter structure in schizophrenia. This review of the literature supports the idea that motor symptoms are closely related to the neurodevelopmental disturbances of schizophrenia and a distinct syndromal dimension with its own pathophysiology.