983 resultados para Surface-features


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tese de Doutoramento em Engenharia de Tecidos, Medicina Regenerativa e Células Estaminais.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information available on the mycoflora associated to ripening Italian “grana type” cheese is very poor. Recently, ochratoxin A (OTA) was detected in samples of packed grated cheese [1]; therefore, the need of information to perform a risk management was highlighted. Moreover, sterigmatocystin (STC) has been reported in cheese and it is considered an emerging problem. Despite the fact that both of them are mycotoxins included in group 2B by IARC [2,3], no European regulation exists. So, the main goal of this work is to give for the first time a general overview about Penicillia and Aspergilli growing on the surface of ripening “grana type” cheese, with particular attention on mycotoxigenic species. To perform this, in 2013 and 2014 crust samples were scratched from ripening grana cheese wheels and also Potato Dextrose Agar plates were exposed to monitor ripening house air. Then, 140 fungal isolates were randomly chosen, purified and monosporic colonies were obtained for their identification at specie level. A polyphasic approach is followed, based on morphological characterisation, toxic extrolites profiling and gene sequencing. The identification is still in progress, but the first results based on the morphological approach showed the presence of mycotoxigenic Aspergilli (Aspergillus flavus and A. versicolor) and various Penicillium species; among them Penicillium chrysogenum, P. implicatum and P. solitum were identified. Only P. chrysogenum was reported to produce the mycotoxins cyclopiazonic acid (CPA) and roquefortine-C (ROQ-C) [4]. These results will be presented and discussed. [1] A. Biancardi, R. Piro, G. Galaverna, C. Dall’Asta, "A simple and reliable liquid chromatography–tandem mass spectrometry method for determination of ochratoxin A in hard cheese" International Journal of Food Sciences and Nutrition 64 (5), 2013, 632 – 640. [2] International Agency for Research on Cancer (IARC) “IARC Monographs on the Evaluation of Carcinogenic Risks to Humans” 31, 1983, 191 – 199. [3] International Agency for Research on Cancer (IARC) “IARC Monographs on the Evaluation of carcinogenic Risks to Humans”, suppl. 7, 1987, 72. [4] J. I. Pitt, D. A. Hocking, “Fungi and Food Spoilage” 1997, 291.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exceptional properties of localised surface plasmons (LSPs), such as local field enhancement and confinement effects, resonant behavior, make them ideal candidates to control the emission of luminescent nanoparticles. In the present work, we investigated the LSP effect on the steady-state and time-resolved emission properties of quantum dots (QDs) by organizing the dots into self-assembled dendrite structures deposited on plasmonic nanostructures. Self-assembled structures consisting of water-soluble CdTe mono-size QDs, were developed on the surface of co-sputtered TiO2 thin films doped with Au nanoparticles (NPs) annealed at different temperatures. Their steady-state fluorescence properties were probed by scanning the spatially resolved emission spectra and the energy transfer processes were investigated by the fluorescence lifetime imaging (FLIM) microscopy. Our results indicate that a resonant coupling between excitons confined in QDs and LSPs in Au NPs located beneath the self-assembled structure indeed takes place and results in (i) a shift of the ground state luminescence towards higher energies and onset of emission from excited states in QDs, and (ii) a decrease of the ground state exciton lifetime (fluorescence quenching).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Amazon has a high diversity of fungi, including species of the genus Daldinia (Ascomycota, Xylariaceae), which produce secondary metabolites with recognized nematicidal and antimicrobial activity. The ecological role of Daldinia is important, as stromata serve as refuges to many insects and arthropodes, and the fungi contribute to the degradation of vegetable organic matter. The aim of this study was to analyze the taxonomic features and mycelial growth conditions in vitro of a Daldinia specimen collected in the Brazilian Amazon. Morphological and molecular studies of the fungus identified it as D. eschscholtzii. To evaluate mycelial growth, we cultivated the fungus at 20, 25, 30, 35, and 40 °C in malt extract-peptone agar (MEPA), malt extract-peptone (MEP), potato dextrose (PD), and minimum medium (MM). The best mycelial growth occurred at 35 °C, although the greatest amount of biomass was obtained at 25 °C and 30 °C. PD proved to be the best medium for biomass production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Biomateriais, Reabilitação e Biomecânica)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theobroma species have economic importance due to their use in the cosmetic and food industries, mainly in the production of chocolate. However, the anatomy of their vegetative structures remains poorly studied. The goal of this study was to describe the anatomical features of Theobroma grandiflorum, T. speciosum and T. subincanum to contribute to the biological knowledge of these species, as well as provide support to the biotechnological studies of native fruit plants of the Amazon. Leaves at different developmental stages were collected and analyzed under light microscopy and scanning electron microscopy. Sessile and stalked stellate trichomes and digitiform glandular trichomes were observed in the expanded leaves of T. grandiflorum and T. subincanum. These species were also similar in the morphology of the midrib, the organization of the mesophyll and the presence of starch grains in the midrib pith cells. Claviform glandular trichomes and mucilage cells in the epidermis occurred only in the expanded leaves of T. speciosum. The presence of mucilage secretory trichomes in shoot apices (colleters) of all species is a new finding for the genus Theobroma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mapania belongs to Mapanioideae, a quite controversial subfamily in Cyperaceae due to the existence of unusual characters in both reproductive and vegetative organs. The genus is represented by seven species in Northern Brazil but taxonomic valuable information related to the leaf organs is still unknown. The present study aimed the anatomical description of the leaf organs (either basal leaves or cataphylls and involucral bracts) of three representative Brazilian species of Mapania. Samples of cataphylls, basal leaves and involucral bracts were sectioned and stained for observations under light microscopy. The involucral bracts provide the most elucidative characters (ten) to distinguish the three species The basal leaves provides six distinguishing characters and are useful to M. macrophylla and M. pycnostachya, as they are absent in M. sylvatica. Mesophyll arrangement in the involucral bracts supports the circumscription of M. macrophylla and M. pycnostachya in M. sect. Pycnocephala and of M. sylvatica in M. sect. Mapania. Some features as thin-walled epidermal cells, stomata level and aerenchyma were considered to be adaptive to the humid environment in which the species occur. The translucent cells are here considered as aerenchyma precursors and a supportive function is assumed for the bulliform cells on the basal leaves and involucral bracts. No silica bodies were found which confirm it as a diagnostic character of Mapania among Hypolytreae genera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To determine the relationship of goblet cell density (GCD) with tear function and ocular surface physiology. Methods: This was a cross-sectional study conducted in 35 asymptomatic subjects with mean age 23.8±3.6 years. Tear film assessment, conjunctiva and cornea examination were done in each subject. Conjunctival impression cytology was performed by applying Nitrocellulose Millipore MFTM-Membrane filter over the superior bulbar conjunctiva. The filter paper was than fixed with 96% ethanol and stained with Periodic Acid Schiff, Hematoxylin and Eosin. GCD was determined by optical microscopy. Relation between GCD and Schirmer score, tear break-up time (TBUT), bulbar redness, limbal redness and corneal staining was determined. Results: The mean GCD was 151±122 cells/mm2. GCD was found higher in eyes with higher Schirmer score but it was not significant (p = 0.75). There was a significant relationship ofGCDwith TBUT (p = 0.042). GCD was not correlated with bulbar redness (p = 0.126), and limbal redness (p = 0.054) as well as corneal staining (p = 0.079). No relationship of GCD with age and gender of the subjects (p > 0.05) was observed. Conclusion: GCD was found correlated with TBUT but no significant correlation was found with the aqueous portion of the tear, limbal as well as bulbar redness and corneal staining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

 The success of synthetic bone implants requires good interface between the material and the host tissue. To study the biological relevance of fi bronectin (FN) density on the osteogenic commitment of human bone marrow mesenchymal stem cells (hBMMSCs), human FN was adsorbed in a linear density gradient on the surface of PCL. The evolution of the osteogenic markers alkaline phosphatase and collagen 1 alpha 1 was monitored by immunohistochemistry, and the cytoskeletal organization and the cell-derived FN were assessed. The functional analysis of the gradient revealed that the lower FN-density elicited stronger osteogenic expression and higher cytoskeleton spreading, hallmarks of the stem cell commitment to the osteoblastic lineage. The identifi cation of the optimal FN density regime for the osteogenic commitment of hBM-MSCs presents a simple and versatile strategy to signifi cantly enhance the surface properties of polycaprolactone as a paradigm for other synthetic polymers intended for bone-related applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of biomaterials to direct osteogenic differentiation of human mesenchymal stem cells (hMSCs) in the absence of osteogenic supplements is thought to be part of the next generation of orthopedic implants. We previously engineered surface-roughness gradients of average roughness (Ra) varying from the sub-micron to the micrometer range ( 0.5–4.7 lm), and mean distance between peaks (RSm) gradually varying from 214 lm to 33 lm. Here we have screened the ability of such surface-gradients of polycaprolactone to influence the expression of alkaline phosphatase (ALP), collagen type 1 (COL1) and mineralization by hMSCs cultured in dexamethasone (Dex)-deprived osteogenic induction medium (OIM) and in basal growth medium (BGM). Ra 1.53 lm/RSm 79 lm in Dex-deprived OI medium, and Ra 0.93 lm/RSm 135 lm in BGM consistently showed higher effectiveness at supporting the expression of the osteogenic markers ALP, COL1 and mineralization, compared to the tissue culture polystyrene (TCP) control in complete OIM. The superior effectiveness of specific surface-roughness revealed that this strategy may be used as a compelling alternative to soluble osteogenic inducers in orthopedic applications featuring the clinically relevant biodegradable polymer polycaprolactone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gold nanorods (AuNRs) have emerged as an exceptional nanotool for a myriad of applications ranging from cancer therapy to tissue engineering. However, their surface modification with biocompatible and stabilizing biomaterials is crucial to allow their use in a biological environment. Herein, low-acyl gellan gum (GG) was used to coat AuNRs surface, taking advantage of its stabilizing, biocompatible and gelling features. The layer-by-layer based strategy implied the successive deposition of poly(acrylic acid), poly(allylamine hydrochloride) and GG, which allowed the formation of a GG hydrogel-like shell with 7 nm thickness around individual AuNRs. Stability studies in a wide range of pH and salt concentrations showed that the polysaccharide coating can prevent AuNRs aggregation. Moreover, a reversible pH-responsive feature of the nanoparticles was observed. Cytocompatibility and osteogenic ability of GG-coated AuNRs was also addressed. After 14 days of culturing within SaOS-2, an osteoblast-like cell line, in vitro studies revealed that AuNRs-GG exhibit no cytotoxicity, were internalized by the cells and localized inside lysosomes. AuNRs-GG combined with osteogenic media enhanced the mineralization capacity two-fold, as compared to cells exposed to osteogenic media alone. The proposed system has shown interesting features for osteogenesis, and further insights might be relevant for drug delivery, tissue engineering and regenerative medicine.