833 resultados para Surface mechanical properties
Resumo:
In the last decades, intensive research has been carried out in order to replace oil-based polymers with bio-based polymers due to growing environmental concerns. So far, most of the barrier materials used in food packaging are petroleum-based materials. The purpose of the barrier is to protect the packaged food from oxygen, water vapour, water and fat. The mechanical and barrier properties of coatings based on starch-plasticizer and starch-poly(vinyl alcohol) (PVOH)-plasticizer blends have been studied in the work described in this thesis. The plasticizers used were glycerol, polyethylene glycol and citric acid. In a second step, polyethylene coatings were extruded onto paperboard pre-coated with a starch-PVOH-plasticizer blend. The addition of PVOH to the starch increased the flexibility of the film. Curing of the film led to a decrease in flexibility and an increase in tensile strength. The flexibility of the starch-PVOH films was increased more when glycerol or polyethylene glycol was added than citric acid. The storage modulus of the starch-PVOH films containing citric acid increased substantially at high temperature. It was seen that the addition of polyethylene glycol or citric acid to the starch-PVOH blend resulted in an enrichment of PVOH at the surface of the films. Tensile tests on the films indicated that citric acid acted as a compatibilizer and increased the compatibility of the starch and PVOH in the blend. The addition of citric acid to the coating recipe substantially decreased the water vapour transmission rate through the starch-PVOH coated paperboard, which indicated that citric acid acts as a cross-linker for starch and/or PVOH. The starch-PVOH coatings containing citric acid showed oxygen-barrier properties similar to those of pure PVOH or of a starch-PVOH blend without plasticizer when four coating layers were applied on a paperboard. The oxygen-barrier properties of coatings based on a starch-PVOH blend containing citric acid indicated a cross-linking and increase in compatibility of the starch-PVOH blends. Polyethylene extrusion coating on a pre-coated paperboard resulted in a clear reduction in the oxygen transmission rate for all the pre-coating formulations containing plasticizers. The addition of a plasticizer to the pre-coating reduced the adhesion of polyethylene to pre-coated board. Polyethylene extrusion coating gave a board with a lower oxygen transmission rate when the paperboard was pre-coated with a polyethylene-glycol-containing formulation than with a citric-acid-containing formulation. The addition of polyethylene glycol to pre-coatings indicated an increase in wetting of the pre-coated paperboard by the polyethylene melt, and this may have sealed the small defects in the pre-coating leading to low oxygen transmission rate. The increase in brittleness of starch-PVOH films containing citric acid at a high temperature seemed to have a dominating effect on the barrier properties developed by the extrusion coating process.
Resumo:
Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperatureinduced and under friction-induced cross-linking, which enhance the modulus of elasticity. Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E) (or Young's modulus) and the second parameter is the hardness (H). Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil. Findings: Young's modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young's modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1). Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units), incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by solgel processes, eg., zinc (II)-silicic acid. Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly.
Resumo:
This article presents a method for making highly porous biodegradable scaffold that may ultimately be used for tissue engineering. Poly(L-lactic-co-1-caprolactone) acid (70:30) (PLCL) scaffold was produced using the solvent casting/leaching out method, which entails dissolving the polymer and adding a porogen that is then leached out by immersing the scaffold in distillated water. Tensile tests were performed for three types of scaffolds, namely pre-wetted, dried, and UV-irradiated scaffolds and their mechanical properties were measured. The prewetted PLCL scaffold possessed a modulus of elasticity 0.92+0.09 MPa, a tensile strength of 0.12+0.03 MPa and an ultimate strain of 23+5.3%. No significant differences in the modulus elasticity, tensile strength, nor ultimate strain were found between the pre-wetted, dried, and UV irradiated scaffolds. The PLCL scaffold was seeded by human fibroblasts in order to evaluate its biocompatibility by Alamar bluew assays. After 10 days of culture, the scaffolds showed good biocompatibility and allowed cell proliferation. However, the fibroblasts stayed essentially at the surface. This study shows the possibility to use the PLCL scaffold in dynamic mechanical conditions for tissue engineering
Resumo:
RATIONALE: Polymer-based surface coatings in outdoor applications experience accelerated degradation due to exposure to solar radiation, oxygen and atmospheric pollutants. These deleterious agents cause undesirable changes to the aesthetic and mechanical properties of the polymer, reducing its lifetime. The use of antioxidants such as hindered amine light stabilisers (HALS) retards these degradative processes; however, mechanisms for HALS action and polymer degradation are poorly understood. METHODS: Detection of the HALS TINUVINW123 (bis(1-octyloxy-2,2,6,6-tetramethyl-4-piperidyl) sebacate) and the polymer degradation products directly from a polyester-based coil coating was achieved by liquid extraction surface analysis (LESA) coupled to a triple quadrupole QTRAPW 5500 mass spectrometer. The detection of TINUVINW123 and melamine was confirmed by the characteristic fragmentation pattern observed in LESA-MS/MS spectra that was identical to that reported for authentic samples. RESULTS: Analysis of an unstabilised coil coating by LESA-MS after exposure to 4 years of outdoor field testing revealed the presence of melamine (1,3,5-triazine-2,4,6-triamine) as a polymer degradation product at elevated levels. Changes to the physical appearance of the coil coating, including powder-like deposits on the coating's surface, were observed to coincide with melamine deposits and are indicative of the phenomenon known as polymer ' blooming'. CONCLUSIONS: For the first time, in situ detection of analytes from a thermoset polymer coating was accomplished without any sample preparation, providing advantages over traditional extraction-analysis approaches and some contemporary ambient MS methods. Detection of HALS and polymer degradation products such as melamine provides insight into the mechanisms by which degradation occurs and suggests LESA-MS is a powerful new tool for polymer analysis. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
Industrial transformer is one of the most critical assets in the power and heavy industry. Failures of transformers can cause enormous losses. The poor joints of the electrical circuit on transformers can cause overheating and results in stress concentration on the structure which is the major cause of catastrophic failure. Few researches have been focused on the mechanical properties of industrial transformers under overheating thermal conditions. In this paper, both mechanical and thermal properties of industrial transformers are jointly investigated using Finite Element Analysis (FEA). Dynamic response analysis is conducted on a modified transformer FEA model, and the computational results are compared with experimental results from literature to validate this simulation model. Based on the FEA model, thermal stress is calculated under different temperature conditions. These analysis results can provide insights to the understanding of the failure of transformers due to overheating, therefore are significant to assess winding fault, especially to the manufacturing and maintenance of large transformers.
Resumo:
The capabilities of the mechanical resonator-based nanosensors in detecting ultra-small mass or force shifts have driven a continuing exploration of the palette of nanomaterials for such application purposes. Based on large-scale molecular dynamics simulations, we have assessed the applicability of a new class of carbon nanomaterials for nanoresonator usage, i.e. the single-wall carbon nanotube (SWNT) network. It is found that SWNT networks inherit excellent mechanical properties from the constituent SWNTs, possessing a high natural frequency. However, although a high quality factor is suggested from the simulation results, it is hard to obtain an unambiguous Q-factor due to the existence of vibration modes in addition to the dominant mode. The nonlinearities resulting from these extra vibration modes are found to exist uniformly under various testing conditions including different initial actuations and temperatures. Further testing shows that these modes can be effectively suppressed through the introduction of axial strain, leading to an extremely high quality factor in the order of 109 estimated from the SWNT network with 2% tensile strain. Additional studies indicate that the carbon rings connecting the SWNTs can also be used to alter the vibrational properties of the resulting network. This study suggests that the SWNT network can be a good candidate for applications as nanoresonators.
Resumo:
Assuming the grinding wheel surface to be fractal in nature, the maximum envelope profile of the wheel and contact deflections are estimated over a range of length scales. This gives an estimate of the 'no wear' roughness of a surface ground metal. Four test materials, aluminum, copper, titanium, and steel are surface ground and their surface power spectra were estimated. The departure of this power spectra from the 'no wear' estimates is studied in terms of the traction-induced wear damage of the surfaces. The surface power spectra in grinding are influenced by hardness and the power is enhanced by wear damage. No such correlation with hardness was found for the polished surface, the roughness of which is insensitive to mechanical properties and appears to be influenced by microstructure and physical properties of the material.
Resumo:
It has been demonstrated that most cells of the body respond to osmotic pressure in a systematic manner. The disruption of the collagen network in the early stages of osteoarthritis causes an increase in water content of cartilage which leads to a reduction of pericellular osmolality in chondrocytes distributed within the extracellular environment. It is therefore arguable that an insight into the mechanical properties of chondrocytes under varying osmotic pressure would provide a better understanding of chondrocyte mechanotransduction and potentially contribute to knowledge on cartilage degeneration. In this present study, the chondrocyte cells were exposed to solutions with different osmolality. Changes in their dimensions and mechanical properties were measured over time. Atomic Force Microscopy (AFM) was used to apply load at various strain-rates and the force-time curves were logged. The thin-layer elastic model was used to extract the elastic stiffness of chondrocytes at different strain-rates and at different solution osmolality. In addition, the porohyperelastic (PHE) model was used to investigate the strain-rate dependent responses under the loading and osmotic pressure conditions. The results revealed that the hypo-osmotic external environment increased chondrocyte dimensions and reduced Young’s modulus of the cells at all strain-rates tested. In contrast, the hyper-osmotic external environment reduced dimensions and increased Young’s modulus. Moreover, by using the PHE model coupled with inverse FEA simulation, we established that the hydraulic permeability of chondrocytes increased with decreasing extracellular osmolality which is consistent with previous work in the literature. This could be due to a higher intracellular fluid volume fraction with lower osmolality.
Resumo:
The crucial role of oxide surface chemical composition on ion transport in "soggy sand" electrolytes is discussed in a systematic manner. A prototype soggy sand electrolytic system comprising aerosil silica functionalized with various hydrophilic and hydrophobic moieties dispersed in lithium perchlorate-ethylene glycol solution was used for the study. Detailed rheology studies show that the attractive particle network in the case of the composite with unmodified aerosil silica (with surface silanol groups) is most favorable for percolation in ionic conductivity, as well as rendering the composite with beneficial elastic mechanical properties: Though weaker in strength compared to the composite with unmodified aerosil particles, attractive particle networks are also observed in composites of aerosil particles with surfaces partially substituted with hydrophobic groups. The percolation in ionic conductivity is, however, dependent on the size of the hydrophobic moiety. No spanning attractive particle network was formed for aerosil particles with surfaces modified with stronger hydrophilic groups (than silanol), and as a result, no percolation in ionic conductivity was observed. The composite with hydrophilic particles was a sol, contrary to gels obtained in the case of unmodified aerosil, and partially substituted with hydrophobic groups.
Resumo:
Lignin was graft copolymerized with methyl methacrylate using manganic pyrophosphate as initiator. This modified lignin was then blended (up to 50 wt%) with low density polyethylene (LDPE) using a small quantity of poly[ethylene-co-(glycidyl methacrylate)] (PEGMA) compatibilizer. The mechanical properties of the blend were substantially improved by using modified lignin in contrast to untreated lignin. Differential scanning calorimetry studies showed loss of crystallinity of the LDPE phase owing to the interaction between the blend components. Thermogravimetric analysis showed higher thermal stability of modified lignin in the domain of blend processing. This suggested that there is scope for useful utilization of lignin, which could also lead to the development of eco-friendly products. (c) 2005 Society of Chemical Industry.
Resumo:
In this study, biodegradable blend of Poly (Ethylene-co-Vinyl Acetate) (EVA) and Ethyl Cellulose (EC) were prepared. Ethylene vinyl alcohol (EVOH) copolymer was used as an interfacial compatibilizer to enhance adhesion between EVA and EC. The melt blended compatibilized biocomposites were examined for mechanical and thermal properties as per the ASTM standards. It has been found that the EC has a reinforcing effect on EVA leading to enhanced tensile strength and also impart biodegradability. Thus, a high loading of 50% EC could be added without compromising Much on the mechanical properties. Analysis of the tensile data using predictive theories showed an enhanced interaction of the dispersed phase (EC) and the matrix (EVA). The compatibilizing effects of EVOH on these blends were confirmed by the significant improvement in the mechanical properties comparable with neat EVA as also observed by SEM microscopy. The TGA thermograms exhibits two-stage degradation and as EC content increases, the onset temperature for thermal degradation reduces. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 1044-1056, 2010
Resumo:
Nanoclusters are objects made up of several to thousands of atoms and form a transitional state of matter between single atoms and bulk materials. Due to their large surface-to-volume ratio, nanoclusters exhibit exciting and yet poorly studied size dependent properties. When deposited directly on bare metal surfaces, the interaction of the cluster with the substrate leads to alteration of the cluster properties, making it less or even non-functional. Surfaces modified with self-assembled monolayers (SAMs) were shown to form an interesting alternative platform, because of the possibility to control wettability by decreasing the surface reactivity and to add functionalities to pre-formed nanoclusters. In this thesis, the underlying size effects and the influence of the nanocluster environment are investigated. The emphasis is on the structural and magnetic properties of nanoclusters and their interaction with thiol SAMs. We report, for the first time, a ferromagnetic-like spin-glass behaviour of uncapped nanosized Au islands tens of nanometres in size. The flattening kinetics of the nanocluster deposition on thiol SAMs are shown to be mediated mainly by the thiol terminal group, as well as the deposition energy and the particle size distribution. On the other hand, a new mechanism for the penetration of the deposited nanoclusters through the monolayers is presented, which is fundamentally different from those reported for atom deposition on alkanethiols. The impinging cluster is shown to compress the thiol layer against the Au surface and subsequently intercalate at the thiol-Au interface. The compressed thiols try then to straighten and push the cluster away from the surface. Depending on the cluster size, this restoring force may or may not enable a covalent cluster-surface bond formation, giving rise to various cluster-surface binding patterns. Compression and straightening of the thiol molecules pinpoint the elastic nature of the SAMs, which has been investigated in this thesis using nanoindentation. The nanoindenation method has been applied to SAMs of varied tail groups, giving insight into the mechanical properties of thiol modified metal surfaces.
Resumo:
Particulate composites based on polymer matrices generally contain fillers, especially those that are abundantly available and are cheaper. The inclusion of these, besides improving the properties, makes the system costwise viable, In the present study, fly ash was tried as a filler in epoxy. The filler particle surfaces were modified using three chemical surface treatment techniques in order to elicit the effect of adhesion at the interface on the mechanical properties of these composites. The compatibilizing of the filler with the use of a silane coupling agent yielded the best compression strength values. Scanning Electron Microscopy (SEM) has been used to characterize and supplement the mechanical test data.
Resumo:
Polymer composites are generally filled with either fibrous or particulate materials to improve the mechanical properties. In choosing the fillers one looks for materials that are inexpensive and available in abundance, in order to realize a cost reduction also. Also, often these fibres/fillers are treated to improve the matrix adhesion and thereby mechanical properties. The present study is focussed on the influence of water ingression in such filler-modified composites and the attendant changes in the compressive properties. The changes in property effected following exposure to aqueous media and the influence interface modification has on the scenario is emphasized in the work. It is seen that for plain epoxy and fly ash filled systems the strengths are increased following exposure to aqueous media. The composites with surface-treated ash particles, on the other hand, record a drop in the values. Modulus values show are increased to varying degree in unfilled and filled systems. The study also includes a fractographic analysis of the tested samples with and without exposure to water.
Resumo:
Epitaxial-Bain-Path and Uniaxial-Bain-Path studies reveal that a B2-CuZr nanowire with Zr atoms on the surface is energetically more stable compared to a B2-CuZr nanowire with Cu atoms on the surface. Nanowires of cross-sectional dimensions in the range of similar to 20-50 are considered. Such stability is also correlated with the initial state of stress in the nanowires. It is also demonstrated here that a more stable structure, i.e., B2-CuZr nanowire with Zr atoms at surface shows improved yield strength compared to B2-CuZr nanowire with Cu atoms at surface site, over range of temperature under both the tensile and the compressive loadings. Nearly 18% increase in the average yield strength under tensile loading and nearly 26% increase in the averaged yield strength under compressive loading are observed for nanowires with various cross-sectional dimensions and temperatures. It is also observed that the B2-CuZr nanowire with Cu atom at the surface site shows a decrease in failure/plastic strain with an increase in temperature. On the other hand, B2-CuZr nanowires with Zr at the surface site shows an improvement in failure/plastic strain, specially at higher temperature as compared to the B2-CuZr nanowires which are having Cu atoms at the surface site. Finally, a possible design methodology for an energetically stable nano-structure with improved thermo-mechanical properties via manipulating the surface atom configuration is proposed.