971 resultados para Super threshold random variable
Resumo:
Phase variation (random ON/OFF switching) of gene expression is a common feature of host-adapted pathogenic bacteria. Phase variably expressed N-6-adenine DNA methyltransferases (Mod) alter global methylation patterns resulting in changes in gene expression. These systems constitute phase variable regulons called phasevarions. Neisseria meningitidis phasevarions regulate genes including virulence factors and vaccine candidates, and alter phenotypes including antibiotic resistance. The target site recognized by these Type III N-6-adenine DNA methyltransferases is not known. Single molecule, real-time (SMRT) methylome analysis was used to identify the recognition site for three key N. meningitidis methyltransferases: ModA11 (exemplified by M.NmeMC58I) (5'-CGY(m6)AG-3'), ModA12 (exemplified by M.Nme77I, M.Nme18I and M.Nme579II) (5'-AC(m6)ACC-3') and ModD1 (exemplified by M.Nme579I) (5'-CC(m6)AGC-3'). Restriction inhibition assays and mutagenesis confirmed the SMRT methylome analysis. The ModA11 site is complex and atypical and is dependent on the type of pyrimidine at the central position, in combination with the bases flanking the core recognition sequence 5'-CGY(m6)AG-3'. The observed efficiency of methylation in the modA11 strain (MC58) genome ranged from 4.6% at 5'-GCGC(m6)AGG-3' sites, to 100% at 5'-ACGT(m6)AGG-3' sites. Analysis of the distribution of modified sites in the respective genomes shows many cases of association with intergenic regions of genes with altered expression due to phasevarion switching.
Resumo:
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface alpha 5 beta 1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 x 10(8)) and Tomlinson J (Library size 1.37 x 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Resumo:
In geographical forwarding of packets in a large wireless sensor network (WSN) with sleep-wake cycling nodes, we are interested in the local decision problem faced by a node that has ``custody'' of a packet and has to choose one among a set of next-hop relay nodes to forward the packet toward the sink. Each relay is associated with a ``reward'' that summarizes the benefit of forwarding the packet through that relay. We seek a solution to this local problem, the idea being that such a solution, if adopted by every node, could provide a reasonable heuristic for the end-to-end forwarding problem. Toward this end, we propose a local relay selection problem consisting of a forwarding node and a collection of relay nodes, with the relays waking up sequentially at random times. At each relay wake-up instant, the forwarder can choose to probe a relay to learn its reward value, based on which the forwarder can then decide whether to stop (and forward its packet to the chosen relay) or to continue to wait for further relays to wake up. The forwarder's objective is to select a relay so as to minimize a combination of waiting delay, reward, and probing cost. The local decision problem can be considered as a variant of the asset selling problem studied in the operations research literature. We formulate the local problem as a Markov decision process (MDP) and characterize the solution in terms of stopping sets and probing sets. We provide results illustrating the structure of the stopping sets, namely, the (lower bound) threshold and the stage independence properties. Regarding the probing sets, we make an interesting conjecture that these sets are characterized by upper bounds. Through simulation experiments, we provide valuable insights into the performance of the optimal local forwarding and its use as an end-to-end forwarding heuristic.
Resumo:
The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.
Resumo:
We explore the effect of modification to Einstein's gravity in white dwarfs for the first time in the literature, to the best of our knowledge. This leads to significantly sub- and super-Chandrasekhar limiting masses of white dwarfs, determined by a single model parameter. On the other hand, type Ia supernovae (SNeIa), a key to unravel the evolutionary history of the universe, are believed to be triggered in white dwarfs having mass close to the Chandrasekhar limit. However, observations of several peculiar, under- and over-luminous SNeIa argue for exploding masses widely different from this limit. We argue that explosions of the modified gravity induced sub- and super-Chandrasekhar limiting mass white dwarfs result in under- and over-luminous SNeIa respectively, thus unifying these two apparently disjoint sub-classes and, hence, serving as a missing link. Our discovery raises two fundamental questions. Is the Chandrasekhar limit unique? Is Einstein's gravity the ultimate theory for understanding astronomical phenomena? Both the answers appear to be no!
Resumo:
Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.
Resumo:
We give strong numerical evidence that a self-interacting probe scalar field in AdS, with only a few modes turned on initially, will undergo fast thermalization only if it is above a certain energetic threshold. Below the threshold the energy stays close to constant in a few modes for a very long time instead of cascading quickly. This indicates the existence of a Strong Stochasticity Threshold (SST) in holography. The idea of SST is familiar from certain statistical mechanical systems, and we suggest that it exists also in AdS gravity. This would naturally reconcile the generic nonlinear instability of AdS observed by Bizon and Rostworowski, with the Fermi-Pasta-Ulam-Tsingou-like quasiperiodicity noticed recently for some classes of initial conditions. We show that our simple setup captures many of the relevant features of the full gravity-scalar system.
Resumo:
Polypropylene and natural rubber blends with multiwalled carbon nanotube (PP/NR + MWCNT nanocomposites) were prepared by melt mixing. The melt rheological behaviour of neat PP and PP/NR blends filled with different loadings (1, 3, 5, 7 wt%) of MWCNT was studied. The effect of PP/NR blends (with compositions, 80/20,50/50, 20/80 by wt) on the rheological percolation threshold was investigated. It was found that blending PP with NR (80/20 and 50/50 composition) reduced the rheological percolation threshold from 5 wt% to 3 wt% MWCNT. The melt rheological behaviour of the MWCNT filled PP/NR blends was correlated with the morphology observations from high resolution transmission electron microscopic (HRTEM) images. In predicting the thermodynamically favoured location of MWCNT in PP/NR blend, the specific interaction of phospholipids in NR phase with MWCNTs was considered quantitatively. The MWCNTs were selectively localised in the NR phase. The percolation mechanism in MWCNT filled PP/NR blends was discussed and for each blend composition, the percolation mechanism was found to be different. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we propose a super resolution (SR) method for synthetic images using FeatureMatch. Existing state-of-the-art super resolution methods are learning based methods, where a pair of low-resolution and high-resolution dictionary pair are trained, and this trained pair is used to replace patches in low-resolution image with appropriate matching patches from the high-resolution dictionary. In this paper, we show that by using Approximate Nearest Neighbour Fields (ANNF), and a common source image, we can by-pass the learning phase, and use a single image for dictionary. Thus, reducing the dictionary from a collection obtained from hundreds of training images, to a single image. We show that by modifying the latest developments in ANNF computation, to suit super resolution, we can perform much faster and more accurate SR than existing techniques. To establish this claim we will compare our algorithm against various state-of-the-art algorithms, and show that we are able to achieve better and faster reconstruction without any training phase.
Resumo:
Identification of dominant modes is an important step in studying linearly vibrating systems, including flow-induced vibrations. In the presence of uncertainty, when some of the system parameters and the external excitation are modeled as random quantities, this step becomes more difficult. This work is aimed at giving a systematic treatment to this end. The ability to capture the time averaged kinetic energy is chosen as the primary criterion for selection of modes. Accordingly, a methodology is proposed based on the overlap of probability density functions (pdf) of the natural and excitation frequencies, proximity of the natural frequencies of the mean or baseline system, modal participation factor, and stochastic variation of mode shapes in terms of the modes of the baseline system - termed here as statistical modal overlapping. The probabilistic descriptors of the natural frequencies and mode shapes are found by solving a random eigenvalue problem. Three distinct vibration scenarios are considered: (i) undamped arid damped free vibrations of a bladed disk assembly, (ii) forced vibration of a building, and (iii) flutter of a bridge model. Through numerical studies, it is observed that the proposed methodology gives an accurate selection of modes. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We study the dynamical behaviors of two types of spiral-and scroll-wave turbulence states, respectively, in two-dimensional (2D) and three-dimensional (3D) mathematical models, of human, ventricular, myocyte cells that are attached to randomly distributed interstitial fibroblasts; these turbulence states are promoted by (a) the steep slope of the action-potential-duration-restitution (APDR) plot or (b) early afterdepolarizations (EADs). Our single-cell study shows that (1) the myocyte-fibroblast (MF) coupling G(j) and (2) the number N-f of fibroblasts in an MF unit lower the steepness of the APDR slope and eliminate the EAD behaviors of myocytes; we explore the pacing dependence of such EAD suppression. In our 2D simulations, we observe that a spiral-turbulence (ST) state evolves into a state with a single, rotating spiral (RS) if either (a) G(j) is large or (b) the maximum possible number of fibroblasts per myocyte N-f(max) is large. We also observe that the minimum value of G(j), for the transition from the ST to the RS state, decreases as N-f(max) increases. We find that, for the steep-APDR-induced ST state, once the MF coupling suppresses ST, the rotation period of a spiral in the RS state increases as (1) G(j) increases, with fixed N-f(max), and (2) N-f(max) increases, with fixed G(j). We obtain the boundary between ST and RS stability regions in the N-f(max)-G(j) plane. In particular, for low values of N-f(max), the value of G(j), at the ST-RS boundary, depends on the realization of the randomly distributed fibroblasts; this dependence decreases as N-f(max) increases. Our 3D studies show a similar transition from scroll-wave turbulence to a single, rotating, scroll-wave state because of the MF coupling. We examine the experimental implications of our study and propose that the suppression (a) of the steep slope of the APDR or (b) EADs can eliminate spiral-and scroll-wave turbulence in heterogeneous cardiac tissue, which has randomly distributed fibroblasts.
Resumo:
Here we extend the exploration of significantly super-Chandrasekhar magnetized white dwarfs by numerically computing axisymmetric stationary equilibria of differentially rotating magnetized polytropic compact stars in general relativity (GR), within the ideal magnetohydrodynamic regime. We use a general relativistic magnetohydrodynamic (GRMHD) framework that describes rotating and magnetized axisymmetric white dwarfs, choosing appropriate rotation laws and magnetic field profiles (toroidal and poloidal). The numerical procedure for finding solutions in this framework uses the 3 + 1 formalism of numerical relativity, implemented in the open source XNS code. We construct equilibrium sequences by varying different physical quantities in turn, and highlight the plausible existence of super-Chandrasekhar white dwarfs, with masses in the range of 2-3 solar mass, with central (deep interior) magnetic fields of the order of 10(14) G and differential rotation with surface time periods of about 1-10 s. We note that such white dwarfs are candidates for the progenitors of peculiar, overluminous Type Ia supernovae, to which observational evidence ascribes mass in the range 2.1-2.8 solar mass. We also present some interesting results related to the structure of such white dwarfs, especially the existence of polar hollows in special cases.
Resumo:
Despite significant improvements in their properties as emitters, colloidal quantum dots have not had much success in emerging as suitable materials for laser applications. Gain in most colloidal systems is short lived, and needs to compete with biexcitonic decay. This has necessitated the use of short pulsed lasers to pump quantum dots to thresholds needed for amplified spontaneous emission or lasing. Continuous wave pumping of gain that is possible in some inorganic phosphors has therefore remained a very distant possibility for quantum dots. Here, we demonstrate that trilayer heterostructures could provide optimal conditions for demonstration of continuous wave lasing in colloidal materials. The design considerations for these materials are discussed in terms of a kinetic model. The electronic structure of the proposed dot architectures is modeled within effective mass theory.