991 resultados para Structure en couches


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Accurate fine-structure atomic data for the Fe-peak elements are essential for interpreting astronomical spectra. There is a severe paucity of data available for Sc II, highlighted by the fact that no collision strengths are readily available for this ion. We present electron-impact excitation collision strengths and Maxwellian averaged effective collision strengths for Sc II. The collision strengths were calculated for all 3916 transitions amongst 89 jj levels (arising from the 3d4s, 3d2, 4s2, 3d4p, 4s4p, 3d5s, 3d4d, 3d5p, 4p2 and 3d4f configurations), resulting in a 944 coupled channel problem. The R-matrix package RMATRXII was utilized, along with the transformation code FINE and the external region code PSTGF, to calculate the collision strengths for a range of incident electron energies in the 0 to 8.3 Rydberg region. Maxwellian averaged effective collision strengths were then produced for 27 temperatures lying within the astrophysically significant range of 30 to 105 K.
The collision strengths and effective collision strengths were produced for two different target models. The purpose was to systematically examine the effect of including open 3p correlation terms into the configuration interaction expansion for the wavefunction. The first model consisted of all 36 CI terms that could be generated with the 3p core closed. The second model incorporated an additional six configurations which allowed for single-electron excitations from within the 3p core. Comparisons are made between the two models and the results of Bautista et al., obtained by private communication. It is concluded that the first model produced the most reliable set of collision and effective collision strengths for use in astrophysical and plasma applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are a large superfamily of signaling proteins expressed on the plasma membrane. They are involved in a wide range of physiological processes and, therefore, are exploited as drug targets in a multitude of therapeutic areas. In this extent, knowledge of structural and functional properties of GPCRs may greatly facilitate rational design of modulator compounds. Solution and solid-state nuclear magnetic resonance (NMR) spectroscopy represents a powerful method to gather atomistic insights into protein structure and dynamics. In spite of the difficulties inherent the solution of the structure of membrane proteins through NMR, these methods have been successfully applied, sometimes in combination with molecular modeling, to the determination of the structure of GPCR fragments, the mapping of receptor-ligand interactions, and the study of the conformational changes associated with the activation of the receptors. In this review, we provide a summary of the NMR contributions to the study of the structure and function of GPCRs, also in light of the published crystal structures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Cholecystokinin-1 receptor (CCK1R) mediates actions of CCK in areas of the central nervous system and of the gut. It is a potential target to treat a number of diseases. As for all G-protein-coupled receptors, docking of ligands into modeled CCK1R binding site should greatly help to understand intrinsic mechanisms of activation. Here, we describe the procedure we used to progressively build a structural model for the CCK1R, to integrated, and on the basis of site-directed mutagenesis data on its binding site. Reliability of the CCK1R model was confirmed by interaction networks that involved conserved and functionally crucial motifs in G-protein-coupled receptors, such as Glu/Asp-Arg-Tyr and Asn-Pro-Xaa-Xaa-Tyr motifs. In addition, the 3-D structure of CCK1R-bound CCK resembled that determined by NMR in a lipid environment. The derived computational model was also used for revealing binding modes of several nonpeptide ligands and for rationalizing ligand structure-activity relationships known from experiments. Our findings indeed support that our "validated CCK1R model" could be used to study the intrinsic mechanism of CCK1R activation and design new ligands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present new homology-based models of the glutamate binding site (in closed and open forms) of the NMDA receptor NR2B subunit derived from X-ray structures of the water soluble AMPA sensitive glutamate receptor. The models were used for revealing binding modes of agonists and competitive antagonists, as well as for rationalizing known experimental facts concerning structure-activity relationships: (i) the switching between the agonist and the antagonist modes of action upon lengthening the chain between the distal acidic group and the amino acid moiety, (ii) the preference for the methyl group attached to the a-amino group of ligands, (iii) the preference for the D-configuration of agonists and antagonists, and (iv) the existence of "superacidic" agonists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background:
The physical periphery of a biological cell is mainly described by signaling pathways which are triggered by transmembrane proteins and receptors that are sentinels to control the whole gene regulatory network of a cell. However, our current knowledge about the gene regulatory mechanisms that are governed by extracellular signals is severely limited.Results: The purpose of this paper is three fold. First, we infer a gene regulatory network from a large-scale B-cell lymphoma expression data set using the C3NET algorithm. Second, we provide a functional and structural analysis of the largest connected component of this network, revealing that this network component corresponds to the peripheral region of a cell. Third, we analyze the hierarchical organization of network components of the whole inferred B-cell gene regulatory network by introducing a new approach which exploits the variability within the data as well as the inferential characteristics of C3NET. As a result, we find a functional bisection of the network corresponding to different cellular components.

Conclusions:
Overall, our study allows to highlight the peripheral gene regulatory network of B-cells and shows that it is centered around hub transmembrane proteins located at the physical periphery of the cell. In addition, we identify a variety of novel pathological transmembrane proteins such as ion channel complexes and signaling receptors in B-cell lymphoma. © 2012 Simoes et al.; licensee BioMed Central Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to study ultracold charge-transfer processes in hybrid atom-ion traps, we have mapped out the potential-energy curves and molecular parameters for several low-lying states of the Rb, Yb+ system. We employ both a multireference configuration interaction and a full configuration interaction (FCI) approach. Turning points, crossing points, potential minima, and spectroscopic molecular constants are obtained for the lowest five molecular states. Long-range parameters, including the dispersion coefficients, are estimated from our ab initio data. The separated-atom ionization potentials and atomic polarizability of the ytterbium atom (ad=128.4 atomic units) are in good agreement with experiment and previous calculations. We present some dynamical calculations for (adiabatic) scattering lengths for the two lowest (Yb, Rb+) channels that were carried out in our work. However, we find that the pseudopotential approximation is rather limited in validity and only applies to nK temperatures. The adiabatic scattering lengths for both the triplet and singlet channels indicate that both are large and negative in the FCI approximation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Helminth parasites (nematodes, flatworms and cestodes) infect over 1 billion of the world's population causing high morbidity and mortality. The large tissue-dwelling worms express papain-like cysteine peptidases, termed cathepsins that play important roles in virulence including host entry, tissue migration and the suppression of host immune responses. Much of our knowledge of helminth cathepsins comes from studies using flatworms or trematode (fluke) parasites. The developmentally-regulated expression of these proteases correlates with the passage of parasites through host tissues and their encounters with different host macromolecules. Recent phylogenetic, biochemical and structural studies indicate that trematode cathepsins exhibit overlapping but distinct substrate specificities due to divergence within the protease active site. Here we provide an overview of the evolution, biochemistry and structure of these important enzymes and highlight how recent advances in proteomics and gene silencing techniques are allowing researchers to probe their biological functions. We focus mainly on members of the cathepsin L gene family of the animal and human pathogen, Fasciola hepatica, because of our deep understanding of their function, biochemistry and structure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Congenital Adrenal Hyperplasia (CAH) is a family of autosomal recessive disorders involving impaired synthesis of cortisol from cholesterol by adrenal cortex. The predominant causes of the disorder are mutations in the CYP21A2 gene that encodes a Cytochrome P450 21-hydroxylase enzyme, which is central to steroidogenesis. The severity of the disease depends upon the extent of impaired enzymatic activity and can be classified under severe Classical form or the mild Non-Classical form, Molecular characterisation of CYP21A2 mutations can be used to predict clinical phenotype and disease severity based upon changes it brings in 21-hydroxylase enzyme structure. A humanized model of CYP21A2 has been used to map and investigate the structural role of all known disease-causing mutations. A structural explanation of clinical manifestation allows us to put forward criteria that might allow the prediction of clinical severity of the disease.