958 resultados para Stem anatomy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stern anatomy and the development of intraxylary phloem were investigated in six to eight years old Coccinia indica L. (Cucurbitaceae). Secondary growth in the stems was achieved by the normal cambial activity. In the innermost part of the thicker stems, xylem parenchyma and pith cells dedifferentiated into meristematic cells at several points. In some of the wider rays, ray cells dedifferentiate and produce secondary xylem and phloem with different orientations and sometimes a complete bicollateral vascular bundle. The inner cambial segments of the bicollateral vascular bundle (of primary growth) maintained radial arrangement even in the mature stems but in most places the cambia were either inactive or showed very few cell divisions. Concomitant with the obliteration and collapse of inner phloem (of bicollateral vascular bundles), parenchyma cells encircling the phloem became meristematic forming a circular sheath of internal cambia. These internal cambia produce only intraxylary secondary phloem centripetally and do not produce any secondary xylem. In the stem, secondary xylem consisted mainly of axial parenchyma, small strands of thick-walled xylem derivatives, i.e. vessel elements and fibres embedded in parenchymatous ground mass, wide and tall rays along with exceptionally wide vessels characteristic of lianas. In thick stems, the axial parenchyma de-differentiated into meristem, which later re-differentiated into interxylary phloem. Fibre dimorphism and pseudo-vestured pits in the vessels are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Piper L. includes a great number of medicinal interest species. P. arboreum is frequent in forests of Maringa, Parana State, Brazil. Its leaves and stem are analyzed morphologic and anatomically, freehand sectioned in cross-section and longitudinal section, and were stained in astra blue and safranin. Petiole and midrib base present 15-20 vascular bundles. The blade is hypostomatic, dorsiventral and shows staurocytic stomatal complex, subepidermis and oil idioblasts. The stem possesses medullary vascular bundles; a typical endodermis is not observed, as it occurs in other Piper species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neural stem/progenitor cell (NSP) biology and neurogenesis in adult central nervous system (CNS) are important both towards potential future therapeutic applications for CNS repair, and for the fundamental function of the CNS. In the present study, we report the characterization of NSP population from subventricular zone (SVZ) of neonatal piglet brain using in vivo and in vitro systems. We show that the nestin and vimentin-positive neural progenitor cells are present in the SVZ of the lateral ventricles of neonatal piglet brain. In vitro, piglet NSPs proliferated as neurospheres, expressed the typical protein of neural progenitors, nestin and a range of well-established neurodevelopmental markers. Upon dissociation and subculture, piglet NSPs differentiated into neurons and glial cells. Clonal analysis demonstrates that piglet NSPs are multi-potent and retain the capacity to generate both glia and neurons. These cells expressed VEGF, VEGFR1, VEGFR2 and Neuropilin-1 and -2 mRNAs. Real time PCR revealed that SVZ NSPs from newborn piglet expressed total VEGF and all VEGF splice variants. These findings show that piglet NSPs may be helpful to more effectively design growth factor based strategies to enhance endogenous precursor cells for cell transplantation studies potentially leading to the application of this strategy in the nervous system disease and injury.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The knowledge of the normal anatomy and variations regarding the management of tumors of the sellar region is paramount to perform safe surgical procedures. The sellar region is located in the center of the middle cranial fossa; it contains complex anatomical structures, and is the site of various pathological processes: tumor, vascular, developmental, and neuroendocrine. We review the microsurgical anatomy (microscopic and endoscopic) of this region and discuss the surgical nuances regarding this topic, based on anatomical concepts.