964 resultados para Steel Company of Canada
Resumo:
Obverse: Stylized Star of David within which lies a state emblem of Canada, a maple leaf. Reverse: Above a sculptured map of Canada.
Resumo:
This edition testifies to the broad international reach of the journal, with contributions variously concerned with Arctic Indigenous communities, the Métis of Canada, Native Hawaiians and Māori of Aotearoa (New Zealand). Two articles stress the need to work collaboratively and respectfully with Indigenous populations whilst conducting research. The first, by Gwen Healey, notes the increased interest in health research in the Arctic, particularly with Inuit populations. Healy seeks to add to the growing body of literature concerned with Indigenous ways of knowing by highlighting Inuit concepts that inform an effective Arctic research model. The second, by primary author Peter Hutchinson and a range of co-contributors, highlights the ways in which Métis collaborators working in health developed a participatory Indigenous research method that was unique in that it foregrounded Métis relationships and relationality. In so doing, the researchers were able to give substance to otherwise staid policy statements about the need for good ethical research conduct.
Resumo:
The present, paper deals with the CAE-based study Of impact of jacketed projectiles on single- and multi-layered metal armour plates using LS-DYNA. The validation of finite element modelling procedure is mainly based on the mesh convergence study using both shell and solid elements for representing single-layered mild steel target plates. It, is shown that the proper choice of mesh density and the strain rate-dependent material properties are essential for all accurate prediction of projectile residual velocity. The modelling requirements are initially arrived at by correlating against test residual velocities for single-layered mild steel plates of different depths at impact velocities in the ran.-c of approximately 800-870 m/s. The efficacy of correlation is adjudged, in terms of a 'correlation index', defined in the paper: for which values close to unity are desirable. The experience gained for single-layered plates is next; used in simulating projectile impacts on multi-layered mild steel target plates and once again a high degree of correlation with experimental residual velocities is observed. The study is repeated for single- and multi-layered aluminium target plates with a similar level of success in test residual velocity prediction. TO the authors' best knowledge, the present comprehensive study shows in particular for the first time that, with a. proper modelling approach, LS-DYNA can be used with a great degree of confidence in designing perforation-resistant single and multi-layered metallic armour plates.
Resumo:
Työntekijöiden henkilökohtaisia arvoja ja niiden yhteyksiä asenteisiin ei ole juuri tutkittu. Tämän tutkimuksen tavoitteena oli selvittää, onko suomalaisessa metalliteollisuuden yrityksen henkilöstön (N=1314) arvojen rakenne S. H. Schwartzin arvoteorian mukainen. Lisäksi tutkittiin arvojen yhteyksiä organisaatiomuutosta koskeviin asenteisiin ja tiedon jakamiseen työyhteisössä. Arvomittarina käytettiin uutta 40-osioista Portrait Value Questionnairea (PVQ). Mittarin validiteetti osoitettiin ver-taamalla nyt kerätyn aineiston arvorakennetta aikaisemmalla mittarilla kerättyihin arvoteorian mukaisiin yliopisto-opiskelijoiden vastauksiin. Organisaatiomuutosta koskevien asenteiden ja tiedonjakamisen mittarit luotiin laadullisissa esitutkimuksissa. Tilastolliset analyysit osoittivat, että toimihenkilöiden ja työntekijöiden arvojen rakenteet noudattivat pääosin Schwartzin teoriaa, mutta turvallisuusarvot sijaitsivat molemmissa ryhmissä universalismin ja hyväntahtoisuuden joukossa. Universalismi ja hyväntahtoisuus ennustivat myönteistä asennetta organisaatiomuutoksia kohtaan, mutta perinteiden ja mielihyvän arvostaminen liittyivät kielteisiin muutosasenteisiin. Sosiaalisia normeja kunnioittavien eli yhdenmukaisuutta arvostavien henkilöiden muut arvot vaikuttivat muutosasenteisiin vähemmän kuin niillä, joille yhdenmukaisuus ei ollut tärkeää. Lisäksi suoriutumisarvon yhteys muutosasenteisiin oli yhdenmukaisuutta arvostavilla henkilöillä positiivinen, mutta niillä, jotka eivät arvostaneet yhdenmukaisuutta, yhteys oli negatiivinen. Itseohjautuvuutta arvostavat henkilöt pitivät työyhteisönsä tiedon jakamista heikompana, kun taas hyväntahtoisuutta ja yhdenmukaisuutta arvostavat pitivät sitä muihin nähden parempana. Suoriutumisarvo oli yhteydessä tiedonjakamiseen vain silloin, kun yhdenmukaisuus oli tärkeää. Työpaikkojen (N=19) keskiarvoja vertailtaessa havaittiin, että ne työpaikat, joissa arvostettiin paljon universalismia, hyväntahtoisuutta ja yhdenmukaisuutta sekä vähän valtaa ja suoriutumista saivat henkilöstöltään parhaat arvioinnit tiedon jakamisesta. Tutkimukseen osallistuneet henkilöt jaettiin työtehtäviensä perusteella kolmeen ammatilliseen ympäristöön: konven-tionaaliseen (mm. taloushallinto), realistiseen (mm. tuotanto) ja yrittäjämäiseen (mm. myynti). Yrittäjämäisessä ammatillisessa ympäristössä toimivat arvostivat enemmän kuin konventionaalisessa ympäristössä toimivat valtaa, itseohjautuvuutta ja suoriutumista. Realistisessa ympäristössä arvostettiin enemmän perinteitä ja mielihyvää kuin yrittäjämäisessä ympäristössä. Ryhmien väliset erot arvoissa johtuivat koulutuksesta, iästä ja sukupuolijakaumasta.
Resumo:
The three phase equilibrium between alloy, spinel solid solution and α-alumina in the Fe-Ni-Al-O system has been fully characterized at 1823K as a function of alloy composition using both experimental and computational methods. The oxygen potential was measured using a solid state cell incorporating yttria-doped thoria as the electrolyte and Cr+ Cr2O3 as the reference electrode. Oxygen concentration of the alloy was determined by an inert gas fusion technique. The composition of the spinel solid solution, formed at the interface between the alloy and an alumina crucible, was determined by EPMA. The variation of the oxygen concentration and potential and composition of the spinel solid solution with mole fraction of nickel in the alloy have been computed using activities in binary Fe-Ni system, free energies of formation of end member spinels FeO•(1+x)Al2O3 and NiO•(1+x)Al2O3 and free energies of solution of oxygen in liquid iron and nickel, available in the literature. Activities in the spinel solid solution were computed using a cation distribution model. The variation of the activity coefficient of oxygen with alloy composition in Fe-Ni-O system was calculated using both the quasichemical model of Jacob and Alcock and the Wagner's model, with the correlation of Chiang and Chang. The computed results for the oxygen potential and the composition of the spinel solid solution are in good agreement with the measurements. The measured oxygen concentration lies between the values computed using models of Wagner and Jacob and Alcock. The results of the study indicate that the deoxidation hyper-surface in multicomponent systems can be computed with useful accuracy using data for end member systems and thermodynamic models.
Resumo:
We explore three possible pathways for the evolution of genomic imprinting. (1) Imprinting may be advantageous in itself when imprinted and unimprinted alleles of a locus confer different phenotypes. If a segment of DNA is imprinted in the gametes of one sex but not in those of the other, it might lead to effects correlated with sexual dimorphism. More fundamentally, in certain organisms, sex determination might have evolved because of imprinting. When imprinting leads to chromosome elimination or inactivation and occurs in some embryos but not in others, two classes of embryos, differing in the number of functional gene copies, would result. A model for sex determination based on inequality in the actual or effective copy-number of particular noncoding, regulatory sequences of DNA has been proposed (Chandra, Proc. natn. Acad. Sci. U.S.A. 82. 1165–1169 and 6947–6949, 1985). Maternal control of offspring sex is another possible consequence of imprinting; this would indicate a potential role for imprinting in sex ratio evolution. (2) Genes responsible for imprinting may have pleiotropic effects and they may have been selected for reasons other than their imprinting ability. Lack of evidence precludes further consideration of this possibility. (3) Imprinting could have co-evolved with other traits. For instance, gamete-specific imprinting could lead to a lowered fitness of androgenetic or gynogenetic diploids relative to the fitness of ‘normal’ diploids. This in turn would reinforce the evolution of anisogamy. The reversibility of imprinting raises the possibility of occasional incomplete or improper erasure. If the site of imprinting is the egg – as appears to be the case with the human X (Chandra and Brown, Nature 253. 165–168, 1975) – either improper imprinting or improper erasure could lead to unusual patterns of inheritance (as in the fragile-X syndrome) or fitness effects skipping generations.
Resumo:
In the present investigation, experiments were conducted by unidirectional sliding of pins made of FCC metals (Pb, Al, and Cu) with significantly different hardness values against the steel plates of various surface textures and roughness using an inclined pin-on-plate sliding apparatus in ambient conditions under both the dry and lubricated conditions. For a given material pair, it was observed that transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, are controlled by the surface texture of the harder mating surfaces and are less dependent of surface roughness (R (a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. It was also observed that the variation of plowing friction as a function of hardness depends on surface textures. More specifically, the plowing friction varies with hardness of the soft materials for a given type of surface texture and it is independent of hardness of soft materials for other type of surface texture. These variations could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. It was also observed that among the surface roughness parameters, the mean slope of the profile, Delta (a), correlated best with the friction. Furthermore, dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing taking place at the asperity level.
Resumo:
In order to answer the practically important question of whether the down conductors of lightning protection systems to tall towers and buildings can be electrically isolated from the structure itself, this work is conducted. As a first step in this regard, it is presumed that the down conductor placed on metallic tower will be a pessimistic representation of the actual problem. This opinion was based on the fact that the proximity of heavy metallic structure will have a large damping effect. The post-stroke current distributions along the down conductors and towers, which can be quite different from that in the lightning channel, govern the post-stroke near field and the resulting gradient in the soil. Also, for a reliable estimation of the actual stroke current from the measured down conductor currents, it is essential to know the current distribution characteristics along the down conductors. In view of these, the present work attempts to deduce the post-stroke current and voltage distribution along typical down conductors and towers. A solution of the governing field equations on an electromagnetic model of the system is sought for the investigation. Simulation results providing the spatio-temporal distribution of the post-stroke current and voltage has provided very interesting results. It is concluded that it is almost impossible to achieve electrical isolation between the structure and the down conductor. Furthermore, there will be significant induction into the steel matrix of the supporting structure.
Resumo:
The paper describes an experimental study of the normal and scratch hardnesses of a poly(methylmethacrylate). The deformations have been introduced using hard steel cones of a range of included cone angles. The influence of the state of interfacial lubrication is examined and rationalized. The observed time dependence of the two types of computed hardness data is compared and the nature of the correlations between these data is evaluated. It is observed that when the imposed strains are modest, say less than 0.2, the scratch hardness and normal hardness deformations produce self consistent data using first order and rather indiscriminate analyses for both types of deformations. At higher levels of imposed strain, a more critical appraisal of the nature of the deformation produced in the two cases is necessary in order to provide mutually consistent hardness values and hence unequivocal rheological characteristics for this polymer.
Resumo:
Recently, the demand of the steel having superior chemical and physical properties has increased for which the content of carbon must be in ultra low range. There are many processes which can produce low carbon steel such as Tank degasser and RH (Rheinstahl-Heraeus) processes. It has been claimed that using a new process, called REDA (Revolutionary Degassing Activator), one can achieve the carbon content below 10ppm in less time. REDA process in terms of installment cost is in between tank degasser and RH processes. As such, REDA process has not been studied thoroughly. Fluid flow phenomena affect the decarburization rate the most besides the chemical reaction rate. Therefore, momentum balance equations along with k-ε turbulent model have been solved for gas and liquid phases in two-dimension (2D) for REDA process. The fluid flow phenomena have been studied in details for this process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the mixing process of the bath significantly.
Resumo:
In the present investigation, soft materials, such as Al-4Mg alloy, high-purity Al and pure Mg pins were slid against hard steel plates of various surface textures to study the response of materials during sliding. The experiments were conducted using an inclined pin-on-plate sliding apparatus under both dry and lubricated conditions in an ambient environment. Two kinds of frictional response, namely steady-state and stick-slip, were observed during sliding. In general, the response was dependent on material pair, normal load, lubrication, and surface texture of the harder material. More specifically, for the case of Al-4Mg alloy, the stick-slip response was absent under both dry and lubricated conditions. For Al, stick-slip was observed only under lubricated conditions. For the case of Mg, the stick-slip response was seen under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on the plowing component of friction. The plowing component of friction was the highest for the surfaces that promoted plane strain conditions and was the lowest for the surfaces that promoted plane stress conditions near the surface.
Resumo:
In recent times the demand of ultra-low carbon steel (ULCS) with improved mechanical properties such as good ductility and good workability has been increased as it is used to produce cold-rolled steel sheets for automobiles. For producing ULCS efficiently, it is necessary to improve the productivity of the vacuum degassers such as RH, DH and tank degasser. Recently, it has been claimed that using a new process, called REDA (revolutionary degassing activator), one can achieve the carbon content below 10 ppm in less time. As such, REDA process has not been studied thoroughly in terms of fluid flow and mass transfer which is a necessary precursor to understand and design this process. Therefore, momentum and mass transfer of the process has been studied by solving momentum and species balance equations along with k-epsilon turbulent model in two-dimension (2D) for REDA process. Similarly, computational fluid dynamic studies have been made in 2D for tank and RH degassers to compare them with REDA process. Computational results have been validated with published experimental and theoretical data. It is found that REDA process is the most efficient among all these processes in terms of mixing efficiency. Fluid flow phenomena have been studied in details for REDA process by varying gas flow rate, depth of immersed snorkel in the steel, diameter of the snorkel and change in vacuum pressure. It is found that design of snorkel affects the melt circulation in the bath significantly.
Resumo:
The surface texture of a die plays an important role in friction during metal forming. In the present study, unidirectional and random surface finishes were produced on hardened steel plate surfaces. To understand the influence of surface texture on friction, experiments were conducted using Al-Mg alloy pins that slid against steel plates of different surface textures. In the sliding experiments, a high coefficient of friction was observed when the pins slid perpendicular to the unidirectional grinding marks and low friction occurred when the pins slid on the random surfaces. Finite element simulations were performed using the measured friction values to understand the stress and strain evolutions in the deforming material using dies with various friction. The numerical results showed that the states of stress and strain rates are strongly influenced by the friction at the interface and hence would influence the final material microstructure. To substantiate the numerical results, laboratory compression tests were conducted. Different surface textures were obtained in order to experience different friction values at different locations. A large variation in the microstructure at these locations was observed during experiments, verifying that surface texture and die friction significantly influence fundamental material formation behavior.
Resumo:
Social insects are characterized by reproductive caste differentiation of colony members into one or a small number of fertile queens and a large number of sterile workers. The evolutionary origin and maintenance of such sterile workers remains an enduring puzzle in insect sociobiology. Here, we studied ovarian development in over 600 freshly eclosed, isolated, virgin female Ropalidia marginata wasps, maintained in the laboratory. The wasps differed greatly both in the time taken to develop their ovaries and in the magnitude of ovarian development despite having similar access to resources. All females started with no ovarian development at day zero, and the percentage of individuals with at least one oocyte at any stage of development increased gradually across age, reached 100% at 100. days and decreased slightly thereafter. Approximately 40% of the females failed to develop ovaries within the average ecological lifespan of the species. Age, body size and adult feeding rate, when considered together, were the most important factors governing ovarian development. We suggest that such flexibility and variation in the potential and timing of reproductive development may physiologically predispose females to accept worker roles and thus provide a gateway to worker ontogeny and the evolution of sociality.
Resumo:
In an effort to study the role of strain rate response on the tribological behavior of metals, room temperature experiments were conducted by sliding commercially pure titanium and a-iron pins against an H-11 die steel flats of various surface textures. The steel flat surface textures were specifically prepared to allow for imposing varying amounts of strain rates at the contacting interface during sliding motion. In the experiments, it was observed that titanium (a harder material than iron) formed a transfer layer on H-11 steel surface textures that produced higher strain rates. In contrast, the titanium pins abraded the steel surfaces that produced lower strain rates. The iron pins were found to abrade the H-11 steel surface regardless of the surface texture characteristics. This unique tribological behavior of titanium is likely due to the fact that titanium undergoes adiabatic shear banding at high strain rates, which creates pathways for lower resistance shear planes. These shear planes lead to fracture and transfer layer formation on the surface of the steel flat, which ultimately promotes a higher strain rate of deformation at the asperity level. Iron does not undergo adiabatic shear banding and thus more naturally abrades the surfaces. Overall, the results clear indicated that a materials strain rate response can be an important factor in controlling the tribological behavior of a plastically deforming material at the asperity level. DOI: 10.1115/1.4007675]