974 resultados para Static voltage stability
Resumo:
AbstractPurple sweet potato (PSP) can provide products with attractive color besides nutritious benefits in food processing. So, the compositions and color stability of an aqueous anthocyanin-based PSP extract were investigated in order to promote its wide use in food industry. PSP anthocyanins were extracted with water, and nine individual anthocyanins (48.72 ug mL–1 in total, 24.36 mg/100 g fresh PSP in yield) were found by HPLC analysis. The PSP extract also contained 17.11 mg mL–1 of protein, 0.44 mg mL–1 of dietary fiber, 2.82 mg mL–1 of reducing sugars, 4.02 ug mL–1 of Se, 54.21 ug mL–1 of Ca and 60.83 ug mL–1 of Mg. Changes in color and stability of the PSP extract, as affected by pH, heat, light and extraction process, were further evaluated. Results indicated that PSP anthocyanins had good stability at pH 2.0-6.0, while the color of PSP extract kept stable during 30 days of storage at 20 °C in dark. Both UV and fluorescent exposure weakened the color stability of PSP extract and UV showed a more drastic effect in comparison. A steaming pretreatment of fresh PSP is beneficial to the color stability.
Resumo:
AbstractLiterature has unveiled that a paper has not been published yet on using non-parametric stability statistics (NPSSs) for evaluating genotypic stability in dough properties of wheat. Accordingly, the effects of genotype (G), environment (E) and GE interaction (GEI) on alveograph parameters, i.e. dough baking strength (W) and its tenacity (P)/extensibility (L), of 18 wheat (T. aestivum L.) genotypes were studied under irrigated field conditions in an 8-year trial (2006-2014) in central Turkey. Furthermore, genotypic stability for W and P/L was determined using 8 NPSSs viz. RM-Rank mean, RSD-Rank’s standard deviation, RS-Rank Sum, TOP-Ranking, Si(1), Si(2), Si(3) and Si(6) rank statistics. The ANOVA revealed that W and P/L were primarily controlled by E, although G and GEI also had significant effects. Among the 8 NPSSs, only RM, RS and TOP statistics were suitable for detecting the genotypes with high stable and bread making quality (e.g. G1 and G17). In conclusion, using RM, RS and TOP statistics is advisable to select for dough quality in wheat under multi-environment trials (METs).
Resumo:
AbstractAnthocyanins are present in high concentrations in Chinese bayberry, Myrica rubra Sieb. & Zucc. Herein, a microwave-assisted extraction was used to extract the anthocyanins from Chinese bayberry. The HPLC chromatogram of the extracts showed that the anthocyanin components were slightly hydrolysed during the extraction process. Further experiments confirmed that microwave irradiation slightly hydrolysed cyanidin-3-O-glucoside to cyanidin, but did not significantly influence the antioxidant activity of the extracts. Optimized extraction conditions for total anthocyanin content were a solid-to-liquid ratio, extraction temperature, and extraction time of 1:50, 80 °C, and 15 min, respectively. Under these conditions, the anthocyanin content was 2.95 ± 0.08 mg·g−1, and the antioxidant activity yield was 279.96 ± 0.1 μmol.·g−1 Trolox equivalent on a dry weight basis. These results indicated that microwave-assisted extraction was a highly efficient extraction method with reduced processing time. However, under some extraction conditions it could damage the anthocyanins. These results provide an important guide for the application of microwave extraction.
Resumo:
Abstract The growing interest in the usage of dietary fiber in food has caused the need to provide precise tools for describing its physical properties. This research examined two dietary fibers from oats and beets, respectively, in variable particle sizes. The application of automated static image analysis for describing the hydration properties and particle size distribution of dietary fiber was analyzed. Conventional tests for water holding capacity (WHC) were conducted. The particles were measured at two points: dry and after water soaking. The most significant water holding capacity (7.00 g water/g solid) was achieved by the smaller sized oat fiber. Conversely, the water holding capacity was highest (4.20 g water/g solid) in larger sized beet fiber. There was evidence for water absorption increasing with a decrease in particle size in regards to the same fiber source. Very strong correlations were drawn between particle shape parameters, such as fiber length, straightness, width and hydration properties measured conventionally. The regression analysis provided the opportunity to estimate whether the automated static image analysis method could be an efficient tool in describing the hydration properties of dietary fiber. The application of the method was validated using mathematical model which was verified in comparison to conventional WHC measurement results.
Resumo:
Lipid micro and nanoparticles have been extensively investigated as carriers for hydrophobic bioactives in food systems because they can simultaneously increase the dispersibility of these lipophilic substances and help improve their bioavailability. In this study, lipid microparticles of babacu oil and denatured whey protein isolate were produced, and their ability to protect quercetin against degradation was evaluated over 30 days of storage. Additionally, the lipid microparticles were subjected to the typical stress conditions of food processing (presence of sucrose, salt, and thermal stresses), and their physico-chemical stability was monitored. The data show that the babacu microparticles efficiently avoided the oxidation of quercetin because 85% of the initial amount of the flavonoid was preserved after 30 days. The particles were notably stable up to a temperature of 70 °C for 10 minutes at relatively high concentrations of salt and sucrose. The type of stirring (mechanical or magnetic) also strongly affected the stability of the dispersions.
Characterization of constituents, quality and stability of pomegranate seed oil (Punica granatum L.)
Resumo:
Abstract This study aimed to characterize pomegranate seed oil and evaluate its quality and stability parameters against those of linseed oil. The profile of fatty acids and phytosterols and the content of tocopherols were analyzed by gas chromatography and high performance liquid chromatography, respectively. The quality of both oils was assessed as recommended by the American Oil Chemists' Society (AOCS) and stability was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene bleaching (coupled oxidation of β-carotene/linoleic acid) and Rancimat® assays. While α-linolenic acid (52%) was the most abundant fatty acid in linseed oil (LO), punicic acid (55%) was highest in pomegranate seed oil (PSO). Tocopherols and phytosterols (175 and 539 mg/100 g, respectively) were greater in PSO than in LO (51 and 328 mg/100 g, respectively). Both oils met quality standards. The β-carotene bleaching and the DPPH assays showed greater oxidative stability for PSO than for LO. The Rancimat® method, on the other hand, indicated low stability for both oils.
Resumo:
Abstract The commercial enzyme (E.C. = 3.2.1.23) from Kluyveromyces lactis (liquid) and Aspergillus oryzae(lyophilized) was investigated for its hydrolysis potential in lactose substrate, UHT milk, and skimmed milk at different concentrations (0.7; 1.0 and 1.5%), pH values (5.0; 6.0; 6.5 and 7.0), and temperature (30; 35; 40 and 55 ºC). High hydrolysis rates were observed for the enzyme from K. lactis at pH 7.0 and 40 ºC, and from A. oryzae at pH 5.0 and 55 ºC. The enzyme from K. lactis showed significantly higher hydrolysis rates when compared to A. oryzae. The effect of temperature and β-galactosidase concentration on the lactose hydrolysis in UHT milk was higher than in skimmed milk, for all temperatures tested. With respect to the thermal stability, a decrease in hydrolysis rate was observed at pH 6.0 at 35 ºC for K. lactisenzyme, and at pH 6.0 at 55 ºC for the enzyme from A. oryzae. This study investigate the hydrolysis of β-galactosidase in UHT and skimmed milk. The knowledge about the characteristics of the β-galactosidase fromK. lactis and A. oryzae enables to use it most efficiently to control the enzyme concentration, temperature, and pH in many industrial processes and product formulations.
Resumo:
Abstract A challenge to the food sector has been the development of new products incorporating co-products from the food processing industry with minimal impact on their pre-determined structures and adding nutritional quality. In order to add value and develop alternatives for the use of co-products generated during the agroindustrial processing, this work aimed to study the stability of gluten-free sweet biscuits developed with soybean okara, rice bran and broken rice. The formulations were elaborated with increasing percentages of these ingredients and compared with the standard (commercial sweet biscuit) for ten months. The analyses were: weight, diameters (internal and external), thickness, specific volume, instrumental parameters of color, texture, scanning electron microscopy, water activity, proximal composition and isoflavones. The experimental sweet biscuits had characteristics of color, weight, volume and diameters (internal and external) very similar to the commercial, whereas texture, lipids and energy value decreased, and aw, moisture and protein increased during storage. The sweet biscuits showed the same stability when compared to the standard, and the
Resumo:
The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.
Resumo:
Recent developments in power electronics technology have made it possible to develop competitive and reliable low-voltage DC (LVDC) distribution networks. Further, islanded microgrids—isolated small-scale localized distribution networks— have been proposed to reliably supply power using distributed generations. However, islanded operations face many issues such as power quality, voltage regulation, network stability, and protection. In this thesis, an energy management system (EMS) that ensures efficient energy and power balancing and voltage regulation has been proposed for an LVDC island network utilizing solar panels for electricity production and lead-acid batteries for energy storage. The EMS uses the master/slave method with robust communication infrastructure to control the production, storage, and loads. The logical basis for the EMS operations has been established by proposing functionalities of the network components as well as by defining appropriate operation modes that encompass all situations. During loss-of-powersupply periods, load prioritizations and disconnections are employed to maintain the power supply to at least some loads. The proposed EMS ensures optimal energy balance in the network. A sizing method based on discrete-event simulations has also been proposed to obtain reliable capacities of the photovoltaic array and battery. In addition, an algorithm to determine the number of hours of electric power supply that can be guaranteed to the customers at any given location has been developed. The successful performances of all the proposed algorithms have been demonstrated by simulations.
Resumo:
Today, renewable energy technologies and modern power electronics have made it feasible to implement low voltage direct current (LVDC) microgrids (MGs) ca-pable to island operation. Such LVDC networks are particularly useful in remote areas. However, there are still pending issues in island operated LVDC MGs like electrical safety and controlled operation, which should be addressed before wide-scale implementation. This thesis is focused on the overall protection of an island operated LVDC network concept, including protection against electrical shocks, mains equipment protection and protection of photovoltaic (PV) power sources and battery energy storage systems (BESSs). The topic is approached through ex-amination of the safety hazards and the appropriate methods to protect against them, comprising considerations for earthing system selection and realisation of the protection system.
Power Electronic Converters in Low-Voltage Direct Current Distribution – Analysis and Implementation
Resumo:
Over the recent years, smart grids have received great public attention. Many proposed functionalities rely on power electronics, which play a key role in the smart grid, together with the communication network. However, “smartness” is not the driver that alone motivates the research towards distribution networks based on power electronics; the network vulnerability to natural hazards has resulted in tightening requirements for the supply security, set both by electricity end-users and authorities. Because of the favorable price development and advancements in the field, direct current (DC) distribution has become an attractive alternative for distribution networks. In this doctoral dissertation, power electronic converters for a low-voltage DC (LVDC) distribution system are investigated. These include the rectifier located at the beginning of the LVDC network and the customer-end inverter (CEI) on the customer premises. Rectifier topologies are introduced, and according to the LVDC system requirements, topologies are chosen for the analysis. Similarly, suitable CEI topologies are addressed and selected for study. Application of power electronics into electricity distribution poses some new challenges. Because the electricity end-user is supplied with the CEI, it is responsible for the end-user voltage quality, but it also has to be able to supply adequate current in all operating conditions, including a short-circuit, to ensure the electrical safety. Supplying short-circuit current with power electronics requires additional measures, and therefore, the short-circuit behavior is described and methods to overcome the high-current supply to the fault are proposed. Power electronic converters also produce common-mode (CM) and radio-frequency (RF) electromagnetic interferences (EMI), which are not present in AC distribution. Hence, their magnitudes are investigated. To enable comprehensive research on the LVDC distribution field, a research site was built into a public low-voltage distribution network. The implementation was a joint task by the LVDC research team of Lappeenranta University of Technology and a power company Suur-Savon S¨ahk¨o Oy. Now, the measurements could be conducted in an actual environment. This is important especially for the EMI studies. The main results of the work concern the short-circuit operation of the CEI and the EMI issues. The applicability of the power electronic converters to electricity distribution is demonstrated, and suggestions for future research are proposed.
Resumo:
The credibility of the rules and the elements of power constitute fundamental keys in the analysis of the political institutions. This paper opens the "black box" of the European Union institutions and analyses the problem of credibility in the commitment of the Stability and Growth pact (SGP). This Pact (SGP) constituted a formal rule that tried to enforce budgetary discipline on the European States. Compliance with this contract could be ensured by the existence of "third party enforcement" or by the coincidence of the ex-ante and ex-post interests of the States (reputational capital). The fact is that states such as France or Germany failed to comply with the ruling and managed to avoid the application of sanctions. This article studies the transactions and the hierarchy of power that exists in the European institutions, and analyses the institutional framework included in the new European Constitution.
Resumo:
This work aims at presenting the challenges that inflation targeting central banks may face since uncertainties represent a harmful element for the effectiveness of monetary policy, and since financial instabilities may disturb the transmission mechanisms - in particular, the expectation channel - and thus the economic stability. Financial stability must not be considered as a simple goal of monetary policy, but a precondition for central banks operate their policies and reach the goals of inflation and output stability. The work identifies different sources of uncertainties that surround central banks' decisions; and approaches the role that inflation targeting central banks should play according to some basic principles that can serve as useful guides for central banks to help them achieve successful outcomes in their conduct of monetary policy.
Resumo:
Various researches in the field of econophysics has shown that fluid flow have analogous phenomena in financial market behavior, the typical parallelism being delivered between energy in fluids and information on markets. However, the geometry of the manifold on which market dynamics act out their dynamics (corporate space) is not yet known. In this thesis, utilizing a Seven year time series of prices of stocks used to compute S&P500 index on the New York Stock Exchange, we have created local chart to the corporate space with the goal of finding standing waves and other soliton like patterns in the behavior of stock price deviations from the S&P500 index. By first calculating the correlation matrix of normalized stock price deviations from the S&P500 index, we have performed a local singular value decomposition over a set of four different time windows as guides to the nature of patterns that may emerge. I turns out that in almost all cases, each singular vector is essentially determined by relatively small set of companies with big positive or negative weights on that singular vector. Over particular time windows, sometimes these weights are strongly correlated with at least one industrial sector and certain sectors are more prone to fast dynamics whereas others have longer standing waves.