902 resultados para Staphylococcus hominis
Resumo:
Coagulase-negative staphylococci, particularly Staphylococcus epidermidis , can be regarded as potential reservoirs of resistance genes for pathogenic strains, e.g., Staphylococcus aureus . The aim of this study was to assess the prevalence of different resistance phenotypes to macrolide, lincosamide, and streptogramins B (MLSB) antibiotics among erythromycin-resistant S. epidermidis, together with the evaluation of genes promoting the following different types of MLSB resistance: ermA, ermB, ermC, msrA, mphC, and linA/A’. Susceptibility to spiramycin was also examined. Among 75 erythromycin-resistant S. epidermidis isolates, the most frequent phenotypes were macrolides and streptogramins B (MSB) and constitutive MLSB (cMLSB). Moreover, all strains with the cMLSB phenotype and the majority of inducible MLSB (iMLSB) isolates were resistant to spiramycin, whereas strains with the MSB phenotype were sensitive to this antibiotic. The D-shape zone of inhibition around the clindamycin disc near the spiramycin disc was found for some spiramycin-resistant strains with the iMLSB phenotype, suggesting an induction of resistance to clindamycin by this 16-membered macrolide. The most frequently isolated gene was ermC, irrespective of the MLSB resistance phenotype, whereas the most often noted gene combination was ermC, mphC, linA/A’. The results obtained showed that the genes responsible for different mechanisms of MLSB resistance in S. epidermidis generally coexist, often without the phenotypic expression of each of them.
Resumo:
National audience
Resumo:
Purpose: To study the prevalence of resistant strains of Staphylococcus aureus isolated from surfaces, beds and various equipment of an Iranian hospital emergency ward. Methods: Two hundred swab samples were collected from the surfaces, beds, trolleys, surgical equipment and diagnostic medical devices in emergency ward. Samples were cultured and those that were S. aureus-positive were confirmed using polymerase chain reaction (PCR). Antimicrobial resistance pattern was analyzed using disk diffusion method. Results: Nine of 200 samples (4.5 %) collected were positive for S. aureus. Surfaces (8.8 %), beds (5 %) and trolleys (5 %) were the most commonly contaminated. S. aureus isolates exhibited varying levels of resistance against antibiotics with the following being the highest: tetracycline (88.8 %), penicillin (88.8 %) and ampicillin (77.7 %). The prevalence of resistance against methicillin, oxacillin and azithromycin were 44.4, 33.3 and 33.3 %, respectively. There was no pattern of resistance against imipenem. Conclusion: Efficient disinfection of surfaces, beds, trolleys and surgical instruments should be performed periodically to reduce colonization of resistant strains of S. aureus in various areas of emergency health care centers.
Resumo:
A mastite em ovelhas de dupla aptidão é reconhecida por afetar a qualidade do leite. Staphylococcus coagulase-negativos (SCN) são os principais micro-organismos responsáveis pela doença, e o tratamento ao final da lactação, pode contribuir para a cura e prevenção de casos subclínicos na lactação consecutiva. Entretanto, fatores de virulência e mecanismos de resistência apresentados por SCN podem reduzir as taxas de cura. Os objetivos deste trabalho foram identificar no leite de ovelhas tratadas e não tratadas à secagem com antimicrobianos, as espécies de SCN antes e após o tratamento e identificar nesses micro-organismos a presença dos genes mecA, icaA, icaC, icaD, bap, bhp, sea, seb, sec, sed e tsst-1, determinar o perfil clonal das principais espécies identificadas e relacionar os casos de cura após o tratamento com a presença/ausência dos respectivos genes. Sessenta ovelhas foram divididas em três grupos experimentais: G1, controle, metades mamárias que não receberam antimicrobiano; G2, metades mamárias em que foram administrados 10 mL de cloxacilina-benzatina 100 mg via intramamária / estrutura convencional; G3, metades mamárias em que foram administrados 86 mL de cloxacilina-benzatina 50 mg via intramamária / estrutura nanoencapsulada. As amostras de leite foram coletadas à secagem e aos 15 e 30 dias pós-parto da lactação seguinte. As análises para identificação das espécies de SCN foram realizadas por meio de testes bioquímicos e Internal Transcribe Spacer (ITS-PCR), e a pesquisa dos genes responsáveis pelos fatores de virulência e pela resistência à oxacilina foram realizados por meio da técnica de reação em cadeia de polimerase (PCR). Dentre as espécies identificadas S. warneri prevaleceram nos três grupos experimentais. Nenhuma amostra foi positiva para o gene mecA. O único gene relacionado com a produção de enterotoxinas encontrado foi o sec. Dentre os genes relacionados com a produção de biofilme, icaD foi o único identificado nos três grupos experimentais. Staphylococcus warneri, S. simulans e S. epidermidis apresentaram clones na mesma metade mamária no pré e pós-parto das ovelhas. A cloxacilina benzatina nanoparticulada 50mg / 86 mL foi eficiente para reduzir a mastite subclínica no pós-parto de ovelhas (P= 0,0192). Staphylococcus warneri, S. simulans, S. epidermidis e S. xylosus foram as espécies de maior ocorrência. Os genes icaA, icaC, icaD e bap foram encontrados no momento da desmama e no pós-parto, os genes sec e icaD estão associados à ausência de cura da mastite subclínica no pós-parto. Ovelhas em que foram isolados SCN portadores de genes responsáveis pela formação de biofilme não apresentaram resultados satisfatórios quando submetidas a esquemas de controle e ao tratamento da mastite subclínica. Os genes sec e icaD, estão associadas à ausência de cura microbiológica da mastite subclínica no pós-parto. Staphylococcus epidermidis e S. xylosus portador do gene bap estão associados à reinfecção.
Resumo:
A presente publicação descreve os procedimentos necessários para a identificação e confirmação molecular de estirpes de S. aureus causadoras de mastite subclínica, provenientes de amostras de leite de cabra, por meio da técnica de RT-PCR.
Resumo:
Purpose: Staphylococcus aureus is the causative agent of many infections and the advent MRSA has drawn much attention to it. However, some organisms have been noted to be wrongly identified as S. aureus through phenotypic identifications leading to wrong treatment of infections. This study is therefore undertaken to evaluate the rate of false identification of other organisms as S. aureus in Southern Nigeria. Methods: 507 microorganisms which have been previously identified as S. aureus in 8 States in Southern Nigeria through characteristic morphology on blood agar, Gram staining, growth and fermentation on Mannitol Salt Agar and coagulase formation were collected. All the isolates were identified in this study through sequencing of 16S rRNA and detection of spa gene. The percentages of true and false identities were determined. Results: Of the 507 isolates previously identified as S. aureus, only 54 (11 %) were confirmed as S. aureus while the rest were coagulase negative Staphylococci (85 % misidentification rate), Bacillus sp. (12 % misidentification rate), and Brevibacterium sp. (3 % misidentification rate). Conclusion: A high rate of false positive identification of S. aureus which could lead to the misuse of antibiotics in emergency situation has been identified in this study. The use of standard methods for the identification of S. aureus at all times is highly recommended.
Resumo:
Introduction: Staphylococcus aureus is a pathogen that causes food poisoning as well as hospital and community acquired infections. Objective: Establish the profile of superantigen genes among hospital isolates in relation to clinical specimen type, susceptibility to antibiotics and hospital or community acquisition. Methods: Eighty one isolates obtained from patients at Colombian hospital, were classified by antimicrobial susceptibility, specimen type and hospital or community acquired . The PCR uniplex and multiplex was used for detection of 22 superantigen genes (18 enterotoxins, tsst-1 and three exfoliative toxins). Results: Ninety five point one percent of isolates harbored one or more of the genes with an average of 5.6 genes. Prevalence of individual genes was variable and the most prevalent was seg (51.9%). Thirty nine genotypes were obtained, and the genotype gimnou (complete egc cluster) was the most prevalent alone (16.0%) and in association with other genes (13.6%). The correlation between presence of superantigens and clinical specimen or antimicrobial susceptibility showed no significant difference. But there was significant difference between presence of superantigens and the origin of the isolates, hospital or community acquired (p= 0.049). Conclusions: The results show the variability of the superantigen genes profile in hospital isolates and shows no conclusive relationship with the clinical sample type and antimicrobial susceptibility, but there was correlation with community and hospital isolates. The analysis of the interplay between virulence, epidemic and antibiotic resistance of bacterial populations is needed to predict the future of infectious diseases.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Agronomia e Medicina Veterinária, Programa de Pós-Graduação em Saúde Animal, 2016.
Resumo:
Pandemic methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 97 (CC97) lineages originated from livestock-to-human host jumps. In recent years, CC97 has become one of the major MRSA lineages detected in Italian farmed animals. The aim of this study was to characterize and analyze differences in MRSA and methicillin-susceptible S. aureus (MSSA) mainly of swine and bovine origins. Forty-seven CC97 isolates, 35 MRSA isolates, and 6 MSSA isolates from different Italian pig and cattle holdings; 5 pig MRSA isolates from Germany; and 1 human MSSA isolate from Spain were characterized by macrorestriction pulsed-field gel electrophoresis (PFGE) analysis, multilocus sequence typing (MLST), spa typing, staphylococcal cassette chromosome mec (SCCmec) typing, and antimicrobial resistance pattern analysis. Virulence and resistance genes were investigated by PCR and microarray analysis. Most of the isolates were of SCCmec type V (SCCmec V), except for two German MRSA isolates (SCCmec III). Five main clusters were identified by PFGE, with the German isolates (clusters I and II) showing 60.5% similarity with the Italian isolates, most of which (68.1%) grouped into cluster V. All CC97 isolates were Panton-Valentine leukocidin (PVL) negative, and a few (n = 7) tested positive for sak or scn. All MRSA isolates were multidrug resistant (MDR), and the main features were erm(B)- or erm(C)-mediated (n = 18) macrolide-lincosamide-streptogramin B resistance, vga(A)-mediated (n = 37) pleuromutilin resistance, fluoroquinolone resistance (n = 33), tet(K) in 32/37 tet(M)-positive isolates, and blaZ in almost all MRSA isolates. Few host-associated differences were detected among CC97 MRSA isolates: their extensive MDR nature in both pigs and dairy cattle may be a consequence of a spillback from pigs of a MRSA lineage that originated in cattle as MSSA and needs further investigation. Measures should be implemented at the farm level to prevent spillover to humans in intensive farming areas.
Resumo:
Methicillin-resistant Staphylococcus aureus (MRSA) Sequence Type (ST)1, Clonal Complex(CC)1, SCCmec V is one of the major Livestock-Associated (LA-) lineages in pig farming industry in Italy and is associated with pigs in other European countries. Recently, it has been increasingly detected in Italian dairy cattle herds. The aim of this study was to analyse the differences between ST1 MRSA and methicillin-susceptible S. aureus (MSSA) from cattle and pig herds in Italy and Europe and human isolates. Sixty-tree animal isolates from different holdings and 20 human isolates were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing, SCCmec typing, and by micro-array analysis for several virulence, antimicrobial resistance, and strain/host-specific marker genes. Three major PFGE clusters were detected. The bovine isolates shared a high (≥90% to 100%) similarity with human isolates and carried the same SCCmec type IVa. They often showed genetic features typical of human adaptation or present in human-associated CC1: Immune evasion cluster (IEC) genes sak and scn, or sea; sat and aphA3-mediated aminoglycoside resistance. Contrary, typical markers of porcine origin in Italy and Spain, like erm(A) mediated macrolide-lincosamide-streptograminB, and of vga(A)-mediated pleuromutilin resistance were always absent in human and bovine isolates. Most of ST(CC)1 MRSA from dairy cattle were multidrug-resistant and contained virulence and immunomodulatory genes associated with full capability of colonizing humans. As such, these strains may represent a greater human hazard than the porcine strains. The zoonotic capacity of CC1 LA-MRSA from livestock must be taken seriously and measures should be implemented at farm-level to prevent spill-over.
Resumo:
The presence of methicillin-susceptible Staphylococcus aureus (MSSA) was analyzed in different free-living wild animals to assess the genetic diversity and predominant genotypes on each animal species. Samples were taken from the skin and/or nares, and isolates were characterized by spa typing, multilocus sequence typing (MLST) and antimicrobial susceptibility testing. The proportion of MSSA carriers were 5.00, 22.93, 19.78, and 17.67% in Eurasian griffon vulture, Iberian ibex, red deer, and wild boar, respectively (P = 0.057). A higher proportion of isolates (P = 0.000) were recovered from nasal samples (78.51%) than skin samples (21.49%), but the 9.26% of red deer and 18.25% of wild boar would have been undetected if only nasal samples had been tested. Sixty-three different spa types were identified, including 25 new spa types. The most common were t528 (43.59%) in Iberian ibex, t548 and t11212 (15.79% and 14.04%) in red deer, and t3750 (36.11%) in wild boar. By MLST, 27 STs were detected, of which 12 had not been described previously. The most frequent were ST581 for Iberian ibex (48.72%), ST425 for red deer (29.82%), and ST2328 for wild boar (42.36%). Isolates from Eurasian griffon vulture belong to ST133. Host specificity has been observed for the most frequent spa types and STs (P = 0.000). The highest resistance percentage was found against benzylpenicillin (average, 22.2%), although most of the S. aureus isolates were susceptible to all antimicrobial tested. Basically, MSSA isolates were different from those MRSA isolates previously detected in the same animal species.
Resumo:
UNLABELLED Since its discovery in the early 2000s, methicillin-resistant Staphylococcus aureus (MRSA) clonal complex 398 (CC398) has become a rapidly emerging cause of human infections, most often associated with livestock exposure. We applied whole-genome sequence typing to characterize a diverse collection of CC398 isolates (n = 89), including MRSA and methicillin-susceptible S. aureus (MSSA) from animals and humans spanning 19 countries and four continents. We identified 4,238 single nucleotide polymorphisms (SNPs) among the 89 core genomes. Minimal homoplasy (consistency index = 0.9591) was detected among parsimony-informative SNPs, allowing for the generation of a highly accurate phylogenetic reconstruction of the CC398 clonal lineage. Phylogenetic analyses revealed that MSSA from humans formed the most ancestral clades. The most derived lineages were composed predominantly of livestock-associated MRSA possessing three different staphylococcal cassette chromosome mec element (SCCmec) types (IV, V, and VII-like) including nine subtypes. The human-associated isolates from the basal clades carried phages encoding human innate immune modulators that were largely missing among the livestock-associated isolates. Our results strongly suggest that livestock-associated MRSA CC398 originated in humans as MSSA. The lineage appears to have undergone a rapid radiation in conjunction with the jump from humans to livestock, where it subsequently acquired tetracycline and methicillin resistance. Further analyses are required to estimate the number of independent genetic events leading to the methicillin-resistant sublineages, but the diversity of SCCmec subtypes is suggestive of strong and diverse antimicrobial selection associated with food animal production. IMPORTANCE Modern food animal production is characterized by densely concentrated animals and routine antibiotic use, which may facilitate the emergence of novel antibiotic-resistant zoonotic pathogens. Our findings strongly support the idea that livestock-associated MRSA CC398 originated as MSSA in humans. The jump of CC398 from humans to livestock was accompanied by the loss of phage-carried human virulence genes, which likely attenuated its zoonotic potential, but it was also accompanied by the acquisition of tetracycline and methicillin resistance. Our findings exemplify a bidirectional zoonotic exchange and underscore the potential public health risks of widespread antibiotic use in food animal production.
Resumo:
La mammite bovine est l’inflammation des tissus internes de la glande mammaire des vaches laitières. Elle est la plupart du temps causée par l’intrusion d’agents pathogènes dans le canal du trayon de la glande mammaire causant ainsi une infection intramammaire (IIM). La mammite engendre des pertes économiques importantes pour l’industrie laitière en raison de la faible production du lait, des coûts de traitements élevés, la présence de résidus d’antibiotiques dans le lait suite à leur utilisation, le rejet de lait non destiné à la consommation et les faibles taux de rendement pendant la transformation du lait en divers produits laitiers. Le développement de l’inflammation est souvent associé au degré d’exposition des glandes mammaires aux pathogènes. Staphylococcus aureus est le pathogène le plus souvent responsable de la mammite bovine au Canada. Il est capable de causer des infections intramammaires persistantes sous-cliniques souvent réfractaires à l’antibiothérapie. En outre, le biofilm représente un facteur de virulence clé dans la persistance de S. aureus pendant la mammite, car il augmente la résistance des bactéries contre les antibiotiques grâce à la matrice extracellulaire qui recouvre et protège la communauté. Le biofilm représente donc, une problématique majeure de l’industrie laitière et le besoin de nouveaux outils thérapeutiques alternatifs adressant ce facteur de virulence est très urgent. Le chitosane est une molécule naturelle extraite de la carapace des crustacés. Elle est exploitée pour de multiples applications biologiques, y compris certaines activités antibiofilm. Dans cette étude, nous avons démontré que les formes de 2,6 kDa et 4 kDa empêchaient la production de biofilm des souches : S. aureus 2117 (forte productrice du biofilm) et le SARM bovin (S. aureus résistant à la méthicilline). Chez la souris, l’administration d’un chitosane de 2,6 kDa n’a démontré aucun effet inflammatoire comparativement au 4 kDa. Les tests de bactéricidie ont démontré que le 2,6 kDa était capable de tuer les bactéries incorporées dans les biofilms préformés d'une manière dose-réponse avec une réduction de > 3 log[indice inférieur 10] CFU / biofilm à la concentration de 4 mg / ml. En culture cellulaire, nous avons observé que le chitosane de 2,6 kDa pouvait empêcher la persistance du SARM bovin dans les cellules épithéliales bovines MAC-T. Les tests de combinaison sur plaque ont révélé que le 2,6 kDa produit une synergie avec les antibiotiques de la classe des macrolides (par exemple, la tilmicosine) contre S. aureus, en réduisant la CMI des deux molécules par 2-8 fois. Finalement, l'administration intramammaire de 2,6 kDa, seul (p <0,01) ou en combinaison avec la tilmicosine (p <0,0001), a réduit la colonisation de S. aureus dans les glandes mammaires de notre modèle de mammite aigu murin.
Resumo:
Biofilm bacteria are more resistant to antibiotics than planktonic cells. Propolis possesses antimicrobial activity. Generally, nanoparticles containing heavy metals possess antimicrobial and antibiofilm properties. In this study, the ability of adherence of Methicillin Resistant Strains of Staphylococcus aureus (MRSA) to catheters treated with magnetite nanoparticles (MNPs), produced by three methods and functionalized with oleic acid and a hydro-alcoholic extract of propolis from Morocco, was evaluated. The chemical composition of propolis was established by gas chromatography mass spectrometry (GC-MS), and the fabricated nanostructures characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Mossbauer spectroscopy and Fourrier transform infrared spectroscopy (FTIR). The capacity for impairing biofilm formation was dependent on the strain, as well as on the mode of production of MNPs. The co-precipitation method of MNPs fabrication using Fe(3+) and Na₂SO₃ solution and functionalized with oleic acid and propolis was the most effective in the impairment of adherence of all MRSA strains to catheters (p < 0.001). The adherence of the strain MRSA16 was also significantly lower (p < 0.001) when the catheters were treated with the hybrid MNPs with oleic acid produced by a hydrothermal method. The anti-MRSA observed can be attributed to the presence of benzyl caffeate, pinocembrin, galangin, and isocupressic acid in propolis extract, along with MNPs. However, for MRSA16, the impairment of its adherence on catheters may only be attributed to the hybrid MNPs with oleic acid, since very small amount, if any at all of propolis compounds were added to the MNPs.
Resumo:
Twenty-four S. aureus isolates were analysed. From those, 22 were isolated from milk of goats and sheep with clinical and subclinical mastitis, from the region of Vale do São Francisco in the Brazilian Sertão and S. aureus ATCC 25923 plus a MRSA strain were added. Alcoholic extracts were produced from several batches of green, red and brown propolis consisting of 300 g of raw propolis in 700 mL of 70 % ethanol. Four genes related to antimicrobial resistance were assessed: blaZ that determines the resistance to β-lactam antibiotics, and genes icaA, icaD and bap that influence the production of biofilm. For the tests of susceptibility to different types of propolis the microdilution method was used, in triplicate, and dilutions between 0.003672 and 15% were tested, 70 % ethanol consisted of a negative control. The gene blaZ was found in 15 isolates; icaA gene was present in 3 isolates, icaD gene in 2 and bap gene was detected in 6 isolates. All the propolis tested exhibited antimicrobial activity, ranging from 44 to 100 % of susceptible isolates depending on different propolis batches. According to the results of this experiment the green and red propolis appear to have better antimicrobial activity than the brown variety.