966 resultados para Stability test
Resumo:
Recent experimental investigations of phase equilibria and thermodynamic properties of the systems M-Pb-O, where M = Ca, Sr or Ba, indicate a regular increase in thermodynamic stability of ternary oxides, MPbO3 and M2PbO4, with increasing basicity of the oxide of the alkaline-earth metal. Number of stable interoxide compounds at 1100 K in the systems M-Pb-O (M = Mg, Ca, Sr, Ba) increases in unit increments from Mg to Ba. In this paper, experimentally determined standard Gibbs energies of formation of M2PbO4 (M = Ca, Sr, Ba) and MPbO3 (M = Sr, Ba) from their component binary monoxides and oxygen gas are combined with an estimated value for CaPbO3 to delineate systematic trends in thermodynamic stability of the ternary oxides. The trends are interpreted using concepts of tolerance factor and acid-base interactions. All the ternary oxides in these systems contain lead in the tetravalent state. The small Pb4+ ions polarize the surrounding oxygen ions and cause the formation of oxyanions which are acidic in character. Hence, the higher oxidation state of lead is stabilized in the presence of basic oxides of alkaline-earth group. A schematic subsolidus temperature-composition phase diagram is presented for the system BaO-PbO-O-2 to illustrate the change in oxidation states in binary and ternary oxides with temperature.
Resumo:
Many Finnish IT companies have gone through numerous organizational changes over the past decades. This book draws attention to how stability may be central to software product development experts and IT workers more generally, who continuously have to cope with such change in their workplaces. It does so by analyzing and theorizing change and stability as intertwined and co-existent, thus throwing light on how it is possible that, for example, even if ‘the walls fall down the blokes just code’ and maintain a sense of stability in their daily work. Rather than reproducing the picture of software product development as exciting cutting edge activities and organizational change as dramatic episodes, the study takes the reader beyond the myths surrounding these phenomena to the mundane practices, routines and organizings in product development during organizational change. An analysis of these ordinary practices offers insights into how software product development experts actively engage in constructing stability during organizational change through a variety of practices, including solidarity, homosociality, close relations to products, instrumental or functional views on products, preoccupations with certain tasks and humble obedience. Consequently, the study shows that it may be more appropriate to talk about varieties of stability, characterized by a multitude of practices of stabilizing rather than states of stagnation. Looking at different practices of stability in depth shows the creation of software as an arena for micro-politics, power relations and increasing pressures for order and formalization. The thesis gives particular attention to power relations and processes of positioning following organizational change: how social actors come to understand themselves in the context of ongoing organizational change, how they comply with and/or contest dominant meanings, how they identify and dis-identify with formalization, and how power relations often are reproduced despite dis-identification. Related to processes of positioning, the reader is also given a glimpse into what being at work in a male-dominated and relatively homogeneous work environment looks like. It shows how the strong presence of men or “blokes” of a particular age and education seems to become invisible in workplace talk that appears ‘non-conscious’ of gender.
Resumo:
Stability results are given for a class of feedback systems arising from the regulation of time-varying discrete-time systems using optimal infinite-horizon and moving-horizon feedback laws. The class is characterized by joint constraints on the state and the control, a general nonlinear cost function and nonlinear equations of motion possessing two special properties. It is shown that weak conditions on the cost function and the constraints are sufficient to guarantee uniform asymptotic stability of both the optimal infinite-horizon and movinghorizon feedback systems. The infinite-horizon cost associated with the moving-horizon feedback law approaches the optimal infinite-horizon cost as the moving horizon is extended.
Resumo:
The displacement between the ridges situated outside the filleted test section of an axially loaded unnotched specimen is computed from the axial load and shape of the specimen and compared with extensometer deflection data obtained from experiments. The effect of prestrain on the extensometer deflection versus specimen strain curve has been studied experimentally and analytically. An analytical study shows that an increase in the slope of the stress-strain curve in the inelastic region increases the slope of the corresponding computed extensometer deflection versus specimen strain curve. A mathematical model has been developed which uses a modified length ¯ℓef in place of the actual length of the uniform diameter test section of the specimen. This model predicts the extensometer deflection within 5% of the corresponding experimental value. This method has been successfully used by the authors to evolve an iterative procedure for predicting the cyclic specimen strain in axial fatigue tests on unnotched specimens.
Resumo:
Some theorems derived recently by the authors on the stability of multidimensional linear time varying systems are reported in this paper. To begin with, criteria based on Liapunov�s direct method are stated. These are followed by conditions on the asymptotic behaviour and boundedness of solutions. Finally,L 2 andL ? stabilities of these systems are discussed. In conclusion, mention is made of some of the problems in aerospace engineering to which these theorems have been applied.
Resumo:
Stability analysis is carried out considering free lateral vibrations of simply supported composite skew plates that are subjected to both direct and shear in-plane forces. An oblique stress component representation is used, consistent with the skew-geometry of the plate. A double series, expressed in Chebyshev polynomials, is used here as the assumed deflection surface and Ritz method of solution is employed. Numerical results for different combinations of side ratios, skew angle, and in-plane loadings that act individually or in combination are obtained. In this method, the in-plane load parameter is varied until the fundamental frequency goes to zero. The value of the in-plane load then corresponds to a critical buckling load. Plots of frequency parameter versus in-plane loading are given for a few typical cases. Details of crossings and quasi degeneracies of these curves are presented.
Resumo:
Active-clamp dc-dc converters are pulsewidth-modulated converters having two switches featuring zero-voltage switching at frequencies beyond 100 kHz. Generalized equivalent circuits valid for steady-state and dynamic performance have been proposed for the family of active-clamp converters. The active-clamp converter is analyzed for its dynamic behavior under current control in this paper. The steady-state stability analysis is presented. On account of the lossless damping inherent in the active-clamp converters, it appears that the stability region in the current-controlled active-clamp converters get extended for duty ratios, a little greater than 0.5, unlike in conventional hard-switched converters. The conventional graphical approach fails to assess the stability of current-controlled active-clamp converters due to the coupling between the filter inductor current and resonant inductor current. An analysis that takes into account the presence of the resonant elements is presented to establish the condition for stability. This method correctly predicts the stability of the current-controlled active-clamp converters. A simple expression for the maximum duty cycle for subharmonic free operation is obtained. The results are verified experimentally.
Resumo:
A method for total risk analysis of embankment dams under earthquake conditions is discussed and applied to the selected embankment dams, i.e., Chang, Tapar, Rudramata, and Kaswati located in the Kachchh region of Gujarat, India, to obtain the seismic hazard rating of the dam site and the risk rating of the structures. Based on the results of the total risk analysis of the dams, coupled non-linear dynamic numerical analyses of the dam sections are performed using acceleration time history record of the Bhuj (India) earthquake as well as five other major earthquakes recorded worldwide. The objective of doing so is to perform the numerical analysis of the dams for the range of amplitude, frequency content and time duration of input motions. The deformations calculated from the numerical analyses are also compared with other approaches available in literature, viz, Makdisi and Seed (1978) approach, Jansen's approach (1990), Swaisgood's method (1995), Bureau's method (1997). Singh et al. approach (2007), and Saygili and Rathje approach (2008) and the results are utilized to foresee the stability of dams in future earthquake scenario. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Energy-based direct methods for transient stability analysis are potentially useful both as offline tools for planning purposes as well as for online security assessment. In this paper, a novel structure-preserving energy function (SPEF) is developed using the philosophy of structure-preserving model for the system and detailed generator model including flux decay, transient saliency, automatic voltage regulator (AVR), exciter and damper winding. A simpler and yet general expression for the SPEF is also derived which can simplify the computation of the energy function. The system equations and the energy function are derived using the centre-of-inertia (COI) formulation and the system loads are modelled as arbitrary functions of the respective bus voltages. Application of the proposed SPEF to transient stability evaluation of power systems is illustrated with numerical examples.
Resumo:
The activity of K sub 2 O in a mixture of alpha -alumina and potassium beta -alumina has been determined using a solid state galvanic cell in the temperature range 600-1000K. The cell is written such that the right hand electrode is positive. The solid electrolyte consisted of a dispersion of alpha -alumina ( approx 15 vol.%) in a matrix of K beta -alumina. The emf of the cell was found to be reversible and to vary linearly with temperature. From the emf and auxiliary data on In sub 2 O sub 3 and K sub 2 O from the literature, the activity of K sub 2 O in the two-phase mixture is obtained. The standard free energy of formation of K beta -alumina from component oxides is given. Graphs.
Resumo:
Vegetation maps and bioclimatic zone classifications communicate the vegetation of an area and are used to explain how the environment regulates the occurrence of plants on large scales. Many practises and methods for dividing the world’s vegetation into smaller entities have been presented. Climatic parameters, floristic characteristics, or edaphic features have been relied upon as decisive factors, and plant species have been used as indicators for vegetation types or zones. Systems depicting vegetation patterns that mainly reflect climatic variation are termed ‘bioclimatic’ vegetation maps. Based on these it has been judged logical to deduce that plants moved between corresponding bioclimatic areas should thrive in the target location, whereas plants moved from a different zone should languish. This principle is routinely applied in forestry and horticulture but actual tests of the validity of bioclimatic maps in this sense seem scanty. In this study I tested the Finnish bioclimatic vegetation zone system (BZS). Relying on the plant collection of Helsinki University Botanic Garden’s Kumpula collection, which according to the BZS is situated at the northern limit of the hemiboreal zone, I aimed to test how the plants’ survival depends on their provenance. My expectation was that plants from the hemiboreal or southern boreal zones should do best in Kumpula, whereas plants from more southern and more northern zones should show progressively lower survival probabilities. I estimated probability of survival using collection database information of plant accessions of known wild origin grown in Kumpula since the mid 1990s, and logistic regression models. The total number of accessions I included in the analyses was 494. Because of problems with some accessions I chose to separately analyse a subset of the complete data, which included 379 accessions. I also analysed different growth forms separately in order to identify differences in probability of survival due to different life strategies. In most analyses accessions of temperate and hemiarctic origin showed lower survival probability than those originating from any of the boreal subzones, which among them exhibited rather evenly high probabilities. Exceptionally mild and wet winters during the study period may have killed off hemiarctic plants. Some winters may have been too harsh for temperate accessions. Trees behaved differently: they showed an almost steadily increasing survival probability from temperate to northern boreal origins. Various factors that could not be controlled for may have affected the results, some of which were difficult to interpret. This was the case in particular with herbs, for which the reliability of the analysis suffered because of difficulties in managing their curatorial data. In all, the results gave some support to the BZS, and especially its hierarchical zonation. However, I question the validity of the formulation of the hypothesis I tested since it may not be entirely justified by the BZS, which was designed for intercontinental comparison of vegetation zones, but not specifically for transcontinental provenance trials. I conclude that botanic gardens should pay due attention to information management and curational practices to ensure the widest possible applicability of their plant collections.
Resumo:
Starting from the exact general relativistic expression for the total energy of selfgravitating spherically distributed matter and using the minimum energy priciple, we calculate the upper mass limit for a neutron star to be 3.1 solar masses.
Resumo:
Purpose - This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART-II) wind tunnel test data. Design/methodology/approach - Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models. Findings - Good correlation between analysis and HART-II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART-II result and other high-fidelity aeroelastic code predictions for flap and torsion mode. For the lead-lag response, the present analysis prediction is somewhat better than other aeroelastic analyses. Research limitations/implications - Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead-lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results. Practical implications - Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time-consuming and expensive wind tunnel tests during the initial stage of the design process. Originality/value - While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART-II wind tunnel experiments.
Resumo:
The seismic slope stability analysis of the right abutment of a railway bridge proposed at about 350 m above the ground level, crossing a river and connecting two huge hillocks in the Himalayas, India, is presented in this paper. The rock slopes are composed of highly jointed rock mass and the joint spacing and orientation are varying at different locations. Seismic slope stability analysis of the slope under consideration is carried out using both pseudo-static approach and time response approach as the site is located in seismic zone V as per the earth quake zonation maps of India. Stability of the slope is studied numerically using program FLAC. The results obtained from the pseudo-static analysis are presented in the form of Factor of Safety (FOS) and the results obtained from the time response analysis of the slope are presented in terms of horizontal and vertical displacements along the slope. The results obtained from both the analyses confirmed the global stability of the slope as the FOS in case of pseudo-static analysis is above 1.0 and the displacements observed in case of time response analysis are within the permissible limits. This paper also presents the results obtained from the parametric analysis performed in the case of time response analysis in order to understand the effect of individual parameters on the overall stability of the slope.