969 resultados para Spin-projected calculations
Resumo:
The understanding of electrostatic interactions is an essential aspect of the complex correlation between structure and function of biological macromolecules. It is also important in protein engineering and design. Theoretical studies of such interactions are predominantly done within the framework of Debye-Huckel theory. A classical example is the Tanford-Kirkwood (TK) model. Besides other limitations, this model assumes an infinitesimally small macromolecule concentration. By comparison to Monte Carlo (MC) simulations, it is shown that TK predictions for the shifts in ion binding constants upon addition of salt become less reliable even at moderately macromolecular concentrations. A simple modification based on colloidal literature is suggested to the TK scheme. The modified TK models suggested here satisfactorily predict MC and experimental shifts in the calcium binding constant as a function of protein concentration for the calbindin D-9k mutant and calmodulin.
Resumo:
We solve the spectrum of the closed Temperley-Lieb quantum spin chains using the coordinate Bethe ansatz. These models are invariant under the quantum group U-q[sl(2)].
Resumo:
Gigahertz conductivity of pressed pellets of ClO4--doped poly( 3-methylthiophene) can be readily obtained from the asymmetry ratio (A / B) of the electron spin resonance line using Dyson's theory. The measurements were performed in three different frequencies, 1.3, 9.4, and 35 GHz. The temperature dependence of the gigahertz conductivity is sensitive to the heating rate, probably due to the ordering of the randomly assembled anions. (C) 1994 Academic Press, Inc.
Resumo:
In this paper, we evaluate the correlation functions of the spin-1/2 XYZ model for some particular cases by using the Mori continued-fraction formalism. The results are exactly the same as those well-known ones. This removes any doubt about the convergence of the continued fraction recently raised by some authors.
A combined wavelet-element free Galerkin method for numerical calculations of electromagnetic fields
Resumo:
A combined wavelet-element free Galerkin (EFG) method is proposed for solving electromagnetic EM) field problems. The bridging scales are used to preserve the consistency and linear independence properties of the entire bases. A detailed description of the development of the discrete model and its numerical implementations is given to facilitate the reader to. understand the proposed algorithm. A numerical example to validate the proposed method is also reported.
Resumo:
The magnetic moment using self-consistent spin-polarized energy band calculations of Fe3Al and Fe2CoAl Heusler phases are presented. These results are compared with the experimental values obtained from the magnetization curves of these materials. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Green function for a spin-1/2 charged particle in the presence of an external plane wave electromagnetic field is calculated by algebraic techniques in terms of the free-particle Green function.
Resumo:
ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
A pressed pellet of CIO (-)(4) poly (3-methylthiophene) (P3MT) was heated for two hours at 85 degrees C and suddenly dropped in liquid nitrogen. A change was observed around 220 K in the Electron Spin Resonance (ESR) spectra when the sample was slowly cooled from room temperature. ESR line asymmetry parameter (A/B) showed two spatially separated phases. One was identified as a small metallic-like phase. The other phase, the larger one, makes a transition to a semiconducting Charge-Density Wave (CDW) state.
Resumo:
The main properties of realistic models for manganites are studied using analytic mean-field approximations and computational numerical methods, focusing on the two-orbital model with electrons interacting through Jahn-Teller (JT) phonons and/or Coulombic repulsions. Analyzing the model including both interactions by the combination of the mean-field approximation and the exact diagonalization method, it is argued that the spin-charge-orbital structure in the insulating phase of the purely JT-phononic model with a large Hund couphng J(H) is not qualitatively changed by the inclusion of the Coulomb interactions. As an important application of the present mean-held approximation, the CE-type antiferromagnetic state, the charge-stacked structure along the z axis, and (3x(2) - r(2))/(3y(2) - r(2))-type orbital ordering are successfully reproduced based on the JT-phononic model with large JH for the half-doped manganite, in agreement with recent Monte Carlo simulation results. Topological arguments and the relevance of the Heisenberg exchange among localized t(2g) spins explains why the inclusion of the nearest-neighbor Coulomb interaction does not destroy the charge stacking structure. It is also verified that the phase-separation tendency is observed both in purely JT-phononic (large JH) and purely Coulombic models in the vicinity of the hole undoped region, as long as realistic hopping matrices are used. This highlights the qualitative similarities of both approaches and the relevance of mixed-phase tendencies in the context of manganites. In addition, the rich and complex phase diagram of the two-orbital Coulombic model in one dimension is presented. Our results provide robust evidence that Coulombic and JT-phononic approaches to manganites are not qualitatively different ways to carry out theoretical calculations, but they share a variety of common features.
Resumo:
We investigate the thermodynamics of an integrable spin ladder model which possesses a free parameter besides rung and leg couplings. The model is exactly solvable by means of the Bethe ansatz and exhibits a phase transition between a gapped and a gapless spin excitation spectrum. The magnetic susceptibility is obtained numerically and its dependence on the anisotropy parameter is determined. The spin gap obtained from the susceptibility curve and the one obtained from the Bethe ansatz equations are in very good agreement. Our results for the magnetic susceptibility fit well the experimental data for the organometallic compounds (5IAP)(2)CuBr4 . 2H(2)O (Landee C. P. et al., Phys. Rev. B, 63 (2001) 100402(R)) Cu-2(C5H12N2)(2)Cl-4 (Hayward C. A., Poilblanc D. and Levy L. P., Phys. Rev. B, 54 (1996) R12649, Chaboussant G. et al., Phys. Rev. Lett., 19 ( 1997) 925; Phys. Rev. B, 55 ( 1997) 3046.) and (C5H12N)(2)CuBr4 (Watson B. C. et al., Phys. Rev. Lett., 86 ( 2001) 5168) in the strong-coupling regime.
Resumo:
An EPR approach to monitor peptide chain aggregation inside resin beads is introduced. Model low and highly peptide-loaded resins containing an aggregating sequence were labeled with a paramagnetic amino acid derivative and studied with regard to their solvation behavior in different solvent systems. For the first time in the peptide synthesis, EPR spectroscopic has allowed the detection of differentiated levels of peptide chain aggregation as a function of solvent and resin loading. (C) 1997, Elsevier B.V. Ltd. All rights reserved.