979 resultados para Spatial query processing
Resumo:
Introduction: Cognitive impairment affects 40-65% of multiple sclerosis (MS) patients, often since early stages of the disease (relapsing remitting MS, RRMS). Frequently affected functions are memory, attention or executive abilities but the most sensitive measure of cognitive deficits in early MS is the information processing speed (Amato, 2008). MRI has been extensively exploited to investigate the substrate of cognitive dysfunction in MS but the underlying physiopathological mechanisms remain unclear. White matter lesion load, whole-brain atrophy and cortical lesions' number play a role but correlations are in some cases modest (Rovaris, 2006; Calabrese, 2009). In this study, we aimed at characterizing and correlating the T1 relaxation times of cortical and sub-cortical lesions with cognitive deficits detected by neuropsychological tests in a group of very early RR MS patients. Methods: Ten female patients with very early RRMS (age: 31.6 ±4.7y; disease duration: 3.8 ±1.9y; EDSS disability score: 1.8 ±0.4) and 10 age- and gender-matched healthy volunteers (mean age: 31.2 ±5.8y) were included in the study. All participants underwent the following neuropsychological tests: Rao's Brief Repeatable Battery of Neuropsychological tests (BRB-N), Stockings of Cambridge, Trail Making Test (TMT, part A and B), Boston Naming Test, Hooper Visual Organization Test and copy of the Rey-Osterrieth Complex Figure. Within 2 weeks from neuropsychological assessment, participants underwent brain MRI at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil. The imaging protocol included 3D sequences with 1x1x1.2 mm3 resolution and 256x256x160 matrix, except for axial 2D-FLAIR: -DIR (T2-weighted, suppressing both WM and CSF; Pouwels, 2006) -MPRAGE (T1-weighted; Mugler, 1991) -MP2RAGE (T1-weighted with T1 maps; Marques, 2010) -FLAIR SPACE (only for patient 4-10, T2-weighted; Mugler, 2001) -2D Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix). Lesions were identified by one experienced neurologist and radiologist using all contrasts, manually contoured and assigned to regional locations (cortical or sub-cortical). Lesion number, volume and T1 relaxation time were calculated for lesions in each contrast and in a merged mask representing the union of the lesions from all contrasts. T1 relaxation times of lesions were normalized with the mean T1 value in corresponding control regions of the healthy subjects. Statistical analysis was performed using GraphPad InStat software. Cognitive scores were compared between patients and controls with paired t-tests; p values ≤ 0.05 were considered significant. Spearmann correlation tests were performed between the cognitive tests, which differed significantly between patients and controls, and lesions' i) number ii) volume iii) T1 relaxation time iv) disease duration and v) years of study. Results: Cortical and sub-cortical lesions count, T1 values and volume are reported in Table 1 (A and B). All early RRMS patients showed cortical lesions (CLs) and the majority consisted of CLs type I (lesions with a cortical component extending to the sub-cortical tissue). The rest of cortical lesions were characterized as type II (intra-cortical lesions). No type III/IV lesions (large sub-pial lesions) were detected. RRMS patients were slightly less educated (13.5±2.5y vs. 16.3±1.8y of study, p=0.02) than the controls. Signs of cortical dysfunction (i.e. impaired learning, language, visuo-spatial skills or gnosis) were rare in all patients. However, patients showed on average lower scores on measures of visual attention and information processing speed (TMT-part A: p=0.01; TMT-part B: p=0.006; PASAT-included in the BRB-N: p=0.04). The T1 relaxation values of CLs type I negatively correlated with the TMT-part A score (r=0.78, p<0.01). The correlations of TMT-part B score and PASAT score with T1 relaxation time of lesions as well and the correlation between TMT-part A, TMT-part B and PASAT score with lesions' i) number ii) volume iii) disease duration and iv) years of study did not reach significance. In order to preclude possible influences from partial volume effects on the T1 values, the correlation between lesion volume and T1 value of CLs type I was calculated; no correlation was found, suggesting that partial volume effects did not affect the statistics. Conclusions: The present pilot study reports for the first time the presence and the T1 characteristics at 3 T of cortical lesions in very early RRMS (< 6 y disease duration). It also shows that CLS type I represents the most frequent cortical lesion type in this cohort of RRMS patients. In addition, it reveals a negative correlation between the attentional test TMT-part A and the T1 properties of cortical lesions type I. In other words, lower attention deficits are concomitant with longer T1-relaxation time in cortical lesions. In respect to this last finding, it could be speculated that long relaxation time correspond to a certain degree of tissue loss that is enough to stimulate compensatory mechanisms. This hypothesis is in line with previous fMRI studies showing functional compensatory mechanisms to help maintaining normal or sub-normal attention performances in RR MS patients (Penner, 2003).
Resumo:
A 19-month mark-release-recapture study of Neotoma micropus with sequential screening for Leishmania mexicana was conducted in Bexar County, Texas, USA. The overall prevalence rate was 14.7% and the seasonal prevalence rates ranged from 3.8 to 26.7%. Nine incident cases were detected, giving an incidence rate of 15.5/100 rats/year. Follow-up of 101 individuals captured two or more times ranged from 14 to 462 days. Persistence of L. mexicana infections averaged 190 days and ranged from 104 to 379 days. Data on dispersal, density, dispersion, and weight are presented, and the role of N. micropus as a reservoir host for L. mexicana is discussed.
Resumo:
This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.
Resumo:
Desenvolupament d'un Sistema d'Informació Geogràfica (SIG), que permeti analitzar les funcions dels jaciments romans de la zona del riu Llobregat i consultar els jaciments, emmagatzemats en una base de dades de forma espacial.
Resumo:
Disseny d'un programari de gestió de magatzems on quedin reflectides les seves entrades, sortides i altres operacions pròpies dels magatzems. El programari ha de ser escalable i perdurar en el temps a més a més de permetre operacions d¿actualització, esborrat, addicció de dades i les operacionsfonamentals de consulta.
Resumo:
L'objectiu és una aplicació que permeti realitzar el càlcul del volum de terres disponibles en el subsòl d'un àrea seleccionada. L'objectiu final del projecte serà crear un Sistema d'Informació Geogràfica SIG que ajudi a valorar quines parcel¿les de l'àrea seleccionada són les que disposen de més volum de terres per iniciar la seva explotació. Per a això, es disposa del programari gvSIG i les seves extensions (SEXTANTE) i de tota la informació que es pugui obtenir sobre els SIG, Cartografia, Geodèsia... Per dur a terme aquest projecte es necessita tenir experiència en Bases de dades, Programació Orientada a Objectes i seria recomanable tenir coneixements sobre Enginyeria del Programador. El projecte se centrarà en la utilització de gvSIG, com un exemple concret de programari SIG de lliure accés, solució desenvolupada per la ¿Conselleria d%o2019Obris Publiquis de la Generalitat Valenciana¿. Una part d'aquest projecte consistirà a avaluar aquest programari. El resultat final serà l'obtenció dels coneixements necessaris per poder treballar amb dades espacials a més d'una aplicació SIG per al càlcul del volum de terres d'un àrea seleccionada.
Resumo:
Pre-mRNA maturation in trypanosomatids occurs through a process called trans-splicing which involves excision of introns and union of exons in two independent transcripts. For the first time, we present the standardization of Trypanosoma cruzi permeable cells (Y strain) as a model for trans-splicing study of mRNAs in trypanosomes, following by RNase protection reaction, which localizes the SL exon and intron. This trans-splicing reaction in vitro was also used to analyze the influence of NFOH-121, a nitrofurazone-derivative, on this mechanism. The results suggested that the prodrug affects the RNA processing in these parasites, but the trans-splicing reaction still occurred.
Resumo:
El TFC que aquí s'exposa ha volgut ser, sobretot, un punt de trobada on poder explorar, de manera pràctica, aquests nous paradigmes de programació iconcretament, les solucions que ofereix la plataforma .NET de Microsoft a través de les seves tecnologies Windows Presentation Foundation (WPF), Language Integrades Query (LINQ) i la seva vessant, LINQ to SQL.
Resumo:
The aim of this study was to describe spatial patterns of the distribution of leprosy and to investigate spatial clustering of incidence rates in the state of Ceará, Northeast Brazil. The average incidence rate of leprosy for the period of 1991 to 1999 was calculated for each municipality of Ceará. Maps were used to describe the spatial distribution of the disease, and spatial statistics were applied to explore large- and small-scale variations of incidence rates. Three regions were identified in which the incidence of leprosy was particularly high. A spatial gradient in the incidence rates was identified, with a tendency of high rates to be concentrated on the North-South axis in the middle region of the state. Moran's I statistic indicated that a significant spatial autocorrelation also existed. The spatial distribution of leprosy in Ceará is heterogeneous. The reasons for spatial clustering of disease rates are not known, but might be related to an heterogeneous distribution of other factors such as crowding, social inequality, and environmental characteristics which by themselves determine the transmission of Mycobacterium leprae.