933 resultados para Spatial and Temporal Pattern


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stereo video techniques are effective for estimating the space-time wave dynamics over an area of the ocean. Indeed, a stereo camera view allows retrieval of both spatial and temporal data whose statistical content is richer than that of time series data retrieved from point wave probes. Classical epipolar techniques and modern variational methods are reviewed to reconstruct the sea surface from the stereo pairs sequentially in time. Current improvements of the variational methods are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PREDICT POTENTIAL DISTRIBUTION. Spatial and temporal evolution of the species under different climate scenarios. Generation of habitat suitability models (HSM)  high degree of uncertainty and limitations. The importance of their validation has been stressed. In this work we discuss the present potential distribution of P. sylvestris and P. nigra in the Iberian Peninsula by using MaxEnt, and evaluate the influence of the different environmental variables. Our intention is to select a set of environmental variables that explains better their current distribution, to achieve the most accurate and reliable models. Then we project them to the past climatic conditions (21 to 0 kyrs BP), to evaluate the outputs with existing palaeo-ecological data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In arid countries worldwide, social conflicts between irrigation-based human development and the conservation of aquatic ecosystems are widespread and attract many public debates. This research focuses on the analysis of water and agricultural policies aimed at conserving groundwater resources and maintaining rurallivelihoods in a basin in Spain's central arid region. Intensive groundwater mining for irrigation has caused overexploitation of the basin's large aquifer, the degradation of reputed wetlands and has given rise to notable social conflicts over the years. With the aim of tackling the multifaceted socio-ecological interactions of complex water systems, the methodology used in this study consists in a novel integration into a common platform of an economic optimization model and a hydrology model WEAP (Water Evaluation And Planning system). This robust tool is used to analyze the spatial and temporal effects of different water and agricultural policies under different climate scenarios. It permits the prediction of different climate and policy outcomes across farm types (water stress impacts and adaptation), at basin's level (aquifer recovery), and along the policies’ implementation horizon (short and long run). Results show that the region's current quota-based water policies may contribute to reduce water consumption in the farms but will not be able to recover the aquifer and will inflict income losses to the rural communities. This situation would worsen in case of drought. Economies of scale and technology are evidenced as larger farms with cropping diversification and those equipped with modern irrigation will better adapt to water stress conditions. However, the long-term sustainability of the aquifer and the maintenance of rurallivelihoods will be attained only if additional policy measures are put in place such as the control of illegal abstractions and the establishing of a water bank. Within the policy domain, the research contributes to the new sustainable development strategy of the EU by concluding that, in water-scarce regions, effective integration of water and agricultural policies is essential for achieving the water protection objectives of the EU policies. Therefore, the design and enforcement of well-balanced region-specific polices is a major task faced by policy makers for achieving successful water management that will ensure nature protection and human development at tolerable social costs. From a methodological perspective, this research initiative contributes to better address hydrological questions as well as economic and social issues in complex water and human systems. Its integrated vision provides a valuable illustration to inform water policy and management decisions within contexts of water-related conflicts worldwide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quantitative descriptive analysis (QDA) is used to describe the nature and the intensity of sensory properties from a single evaluation of a product, whereas temporal dominance of sensation (TDS) is primarily used to identify dominant sensory properties over time. Previous studies with TDS have focused on model systems, but this is the first study to use a sequential approach, i.e. QDA then TDS in measuring sensory properties of a commercial product category, using the same set of trained assessors (n = 11). The main objectives of this study were to: (1) investigate the benefits of using a sequential approach of QDA and TDS and (2) to explore the impact of the sample composition on taste and flavour perceptions in blackcurrant squashes. The present study has proposed an alternative way of determining the choice of attributes for TDS measurement based on data obtained from previous QDA studies, where available. Both methods indicated that the flavour profile was primarily influenced by the level of dilution and complexity of sample composition combined with blackcurrant juice content. In addition, artificial sweeteners were found to modify the quality of sweetness and could also contribute to bitter notes. Using QDA and TDS in tandem was shown to be more beneficial than each just on its own enabling a more complete sensory profile of the products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Validación de la cartografía generada del terreno a partir de una nuevo sistema de validación propuesto

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Se proponen novedosas fórmulas para evaluar la certeza de la cartografía

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CO2 capture and storage (CCS) projects are presently developed to reduce the emission of anthropogenic CO2 into the atmosphere. CCS technologies are expected to account for the 20% of the CO2 reduction by 2050. Geophysical, ground deformation and geochemical monitoring have been carried out to detect potential leakage, and, in the event that this occurs, identify and quantify it. This monitoring needs to be developed prior, during and after the injection stage. For a correct interpretation and quantification of the leakage, it is essential to establish a pre-injection characterization (baseline) of the area affected by the CO2 storage at reservoir level as well as at shallow depth, surface and atmosphere, via soil gas measurements. Therefore, the methodological approach is important because it can affect the spatial and temporal variability of this flux and even jeopardize the total value of CO2 in a given area. In this sense, measurements of CO2 flux were done using portable infrared analyzers (i.e., accumulation chambers) adapted to monitoring the geological storage of CO2, and other measurements of trace gases, e.g. radon isotopes and remote sensing imagery were tested in the natural analogue of Campo de Calatrava (Ciudad Real, Spain) with the aim to apply in CO2 leakage detection; thus, observing a high correlation between CO2 and radon (r=0,858) and detecting some vegetation indices that may be successfully applied for the leakage detection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Improved management of nitrogen (N) in agriculture is necessary to achieve a sustainable balance between the production of food and other biomass, and the unwanted effects of N on water pollution, greenhouse gas emissions, biodiversity deterioration and human health. To analyse farm N-losses and the complex interactions within farming systems, efficient methods for identifying emissions hotspots and evaluating mitigation measures are therefore needed. The present paper aims to fill this gap at the farm and landscape scales. Six agricultural landscapes in Poland (PL), the Netherlands (NL), France (FR), Italy (IT), Scotland (UK) and Denmark (DK) were studied, and a common method was developed for undertaking farm inventories and the derivation of farm N balances, N surpluses and for evaluating uncertainty for the 222 farms and 11 440 ha of farmland included in the study. In all landscapes, a large variation in the farm N surplus was found, and thereby a large potential for reductions. The highest average N surpluses were found in the most livestock-intensive landscapes of IT, FR, and NL; on average 202 ± 28, 179 ± 63 and 178 ± 20 kg N ha−1 yr−1, respectively. All landscapes showed hotspots, especially from livestock farms, including a special UK case with large-scale landless poultry farming. Overall, the average N surplus from the land-based UK farms dominated by extensive sheep and cattle grazing was only 31 ± 10 kg N ha−1 yr−1, but was similar to the N surplus of PL and DK (122 ± 20 and 146 ± 55 kg N ha−1 yr−1, respectively) when landless poultry farming was included. We found farm N balances to be a useful indicator for N losses and the potential for improving N management. Significant correlations to N surplus were found, both with ammonia air concentrations and nitrate concentrations in soils and groundwater, measured during the period of N management data collection in the landscapes from 2007–2009. This indicates that farm N surpluses may be used as an independent dataset for validation of measured and modelled N emissions in agricultural landscapes. No significant correlation was found with N measured in surface waters, probably because of spatial and temporal variations in groundwater buffering and biogeochemical reactions affecting N flows from farm to surface waters. A case study of the development in N surplus from the landscape in DK from 1998–2008 showed a 22% reduction related to measures targeted at N emissions from livestock farms. Based on the large differences in N surplus between average N management farms and the most modern and N-efficient farms, it was concluded that additional N-surplus reductions of 25–50%, as compared to the present level, were realistic in all landscapes. The implemented N-surplus method was thus effective for comparing and synthesizing results on farm N emissions and the potentials of mitigation options. It is recommended for use in combination with other methods for the assessment of landscape N emissions and farm N efficiency, including more detailed N source and N sink hotspot mapping, measurements and modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los estudios sobre la asignación del carbono en los ecosistemas forestales proporcionan información esencial para la comprensión de las diferencias espaciales y temporales en el ciclo del carbono de tal forma que pueden aportar información a los modelos y, así predecir las posibles respuestas de los bosques a los cambios en el clima. Dentro de este contexto, los bosques Amazónicos desempeñan un papel particularmente importante en el balance global del carbono; no obstante, existen grandes incertidumbres en cuanto a los controles abióticos en las tasas de la producción primaria neta (PPN), la asignación de los productos de la fotosíntesis a los diferentes componentes o compartimentos del ecosistema (aéreo y subterráneo) y, cómo estos componentes de la asignación del carbono responden a eventos climáticos extremos. El objetivo general de esta tesis es analizar los componentes de la asignación del carbono en bosques tropicales maduros sobre suelos contrastantes, que crecen bajo condiciones climáticas similares en dos sitios ubicados en la Amazonia noroccidental (Colombia): el Parque Natural Nacional Amacayacu y la Estación Biológica Zafire. Con este objetivo, realicé mediciones de los componentes de la asignación del carbono (biomasa, productividad primaria neta, y su fraccionamiento) a nivel ecosistémico y de la dinámica forestal (tasas anuales de mortalidad y reclutamiento), a lo largo de ocho años (20042012) en seis parcelas permanentes de 1 hectárea establecidas en cinco tipos de bosques sobre suelos diferentes (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa). Toda esta información me permitió abordar preguntas específicas que detallo a continuación. En el Capítulo 2 evalúe la hipótesis de que a medida que aumenta la fertilidad del suelo disminuye la cantidad del carbono asignado a la producción subterránea (raíces finas con diámetro <2 mm). Y para esto, realicé mediciones de la masa y la producción de raíces finas usando dos métodos: (1) el de los cilindros de crecimiento y, (2) el de los cilindros de extracción secuencial. El monitoreo se realizó durante 2.2 años en los bosques con suelos más contrastantes: arcilla y arena-francosa. Encontré diferencias significativas en la masa de raíces finas y su producción entre los bosques y, también con respecto a la profundidad del suelo (010 y 1020 cm). El bosque sobre arena-francosa asignó más carbono a las raíces finas que el bosque sobre arcillas. La producción de raíces finas en el bosque sobre arena-francosa fue dos veces más alta (media ± error estándar = 2.98 ± 0.36 y 3.33 ± 0.69 Mg C ha1 año1, con el método 1 y 2, respectivamente), que para el bosque sobre arcillas, el suelo más fértil (1.51 ± 0.14, método 1, y desde 1.03 ± 0.31 a 1.36 ± 0.23 Mg C ha1 año1, método 2). Del mismo modo, el promedio de la masa de raíces finas fue tres veces mayor en el bosque sobre arena-francosa (5.47 ± 0.17 Mg C ha1) que en el suelo más fértil (de 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). La masa de las raíces finas también mostró un patrón temporal relacionado con la lluvia, mostrando que la producción de raíces finas disminuyó sustancialmente en el período seco del año 2005. Estos resultados sugieren que los recursos del suelo pueden desempeñar un papel importante en los patrones de la asignación del carbono entre los componentes aéreo y subterráneo de los bosques tropicales; y que el suelo no sólo influye en las diferencias en la masa de raíces finas y su producción, sino que también, en conjunto con la lluvia, sobre la estacionalidad de la producción. En el Capítulo 3 estimé y analicé los tres componentes de la asignación del carbono a nivel del ecosistema: la biomasa, la productividad primaria neta PPN, y su fraccionamiento, en los mismos bosques del Capítulo 2 (el bosque sobre arcillas y el bosque sobre arena-francosa). Encontré diferencias significativas en los patrones de la asignación del carbono entre los bosques; el bosque sobre arcillas presentó una mayor biomasa total y aérea, así como una PPN, que el bosque sobre arena-francosa. Sin embargo, la diferencia entre los dos bosques en términos de la productividad primaria neta total fue menor en comparación con las diferencias entre la biomasa total de los bosques, como consecuencia de las diferentes estrategias en la asignación del carbono a los componentes aéreo y subterráneo del bosque. La proporción o fracción de la PPN asignada a la nueva producción de follaje fue relativamente similar entre los dos bosques. Nuestros resultados de los incrementos de la biomasa aérea sugieren una posible compensación entre la asignación del carbono al crecimiento de las raíces finas versus el de la madera, a diferencia de la compensación comúnmente asumida entre la parte aérea y la subterránea en general. A pesar de estas diferencias entre los bosques en términos de los componentes de la asignación del carbono, el índice de área foliar fue relativamente similar entre ellos, lo que sugiere que el índice de área foliar es más un indicador de la PPN total que de la asignación de carbono entre componentes. En el Capítulo 4 evalué la variación espacial y temporal de los componentes de la asignación del carbono y la dinámica forestal de cinco tipos e bosques amazónicos y sus respuestas a fluctuaciones en la precipitación, lo cual es completamente relevante en el ciclo global del carbono y los procesos biogeoquímicos en general. Estas variaciones son así mismo importantes para evaluar los efectos de la sequía o eventos extremos sobre la dinámica natural de los bosques amazónicos. Evalué la variación interanual y la estacionalidad de los componentes de la asignación del carbono y la dinámica forestal durante el periodo 2004−2012, en cinco bosques maduros sobre diferentes suelos (arcilloso, franco-arcilloso, franco-arcilloso-arenoso, franco-arenoso y arena-francosa), todos bajo el mismo régimen local de precipitación en la Amazonia noroccidental (Colombia). Quería examinar sí estos bosques responden de forma similar a las fluctuaciones en la precipitación, tal y como pronostican muchos modelos. Consideré las siguientes preguntas: (i) ¿Existe una correlación entre los componentes de la asignación del carbono y la dinámica forestal con la precipitación? (ii) ¿Existe correlación entre los bosques? (iii) ¿Es el índice de área foliar (LAI) un indicador de las variaciones en la producción aérea o es un reflejo de los cambios en los patrones de la asignación del carbono entre bosques?. En general, la correlación entre los componentes aéreo y subterráneo de la asignación del carbono con la precipitación sugiere que los suelos juegan un papel importante en las diferencias espaciales y temporales de las respuestas de estos bosques a las variaciones en la precipitación. Por un lado, la mayoría de los bosques mostraron que los componentes aéreos de la asignación del carbono son susceptibles a las fluctuaciones en la precipitación; sin embargo, el bosque sobre arena-francosa solamente presentó correlación con la lluvia con el componente subterráneo (raíces finas). Por otra parte, a pesar de que el noroeste Amazónico es considerado sin una estación seca propiamente (definida como <100 mm meses −1), la hojarasca y la masa de raíces finas mostraron una alta variabilidad y estacionalidad, especialmente marcada durante la sequía del 2005. Además, los bosques del grupo de suelos francos mostraron que la hojarasca responde a retrasos en la precipitación, al igual que la masa de raíces finas del bosque sobre arena-francosa. En cuanto a la dinámica forestal, sólo la tasa de mortalidad del bosque sobre arena-francosa estuvo correlacionada con la precipitación (ρ = 0.77, P <0.1). La variabilidad interanual en los incrementos en el tallo y la biomasa de los individuos resalta la importancia de la mortalidad en la variación de los incrementos en la biomasa aérea. Sin embargo, las tasas de mortalidad y las proporciones de individuos muertos por categoría de muerte (en pie, caído de raíz, partido y desaparecido), no mostraron tendencias claras relacionadas con la sequía. Curiosamente, la hojarasca, el incremento en la biomasa aérea y las tasas de reclutamiento mostraron una alta correlación entre los bosques, en particular dentro del grupo de los bosques con suelos francos. Sin embargo, el índice de área foliar estimado para los bosques con suelos más contrastantes (arcilla y arena-francosa), no presentó correlación significativa con la lluvia; no obstante, estuvo muy correlacionado entre bosques; índice de área foliar no reflejó las diferencias en la asignación de los componentes del carbono, y su respuesta a la precipitación en estos bosques. Por último, los bosques estudiados muestran que el noroeste amazónico es susceptible a fenómenos climáticos, contrario a lo propuesto anteriormente debido a la ausencia de una estación seca propiamente dicha. ABSTRACT Studies of carbon allocation in forests provide essential information for understanding spatial and temporal differences in carbon cycling that can inform models and predict possible responses to changes in climate. Amazon forests play a particularly significant role in the global carbon balance, but there are still large uncertainties regarding abiotic controls on the rates of net primary production (NPP) and the allocation of photosynthetic products to different ecosystem components; and how the carbon allocation components of Amazon forests respond to extreme climate events. The overall objective of this thesis is to examine the carbon allocation components in old-growth tropical forests on contrasting soils, and under similar climatic conditions in two sites at the Amacayacu National Natural Park and the Zafire Biological Station, located in the north-western Amazon (Colombia). Measurements of above- and below-ground carbon allocation components (biomass, net primary production, and its partitioning) at the ecosystem level, and dynamics of tree mortality and recruitment were done along eight years (20042012) in six 1-ha plots established in five Amazon forest types on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand) to address specific questions detailed in the next paragraphs. In Chapter 2, I evaluated the hypothesis that as soil fertility increases the amount of carbon allocated to below-ground production (fine-roots) should decrease. To address this hypothesis the standing crop mass and production of fine-roots (<2 mm) were estimated by two methods: (1) ingrowth cores and, (2) sequential soil coring, during 2.2 years in the most contrasting forests: the clay-soil forest and the loamy-sand forest. We found that the standing crop fine-root mass and its production were significantly different between forests and also between soil depths (0–10 and 10–20 cm). The loamysand forest allocated more carbon to fine-roots than the clay-soil forest, with fine-root production in the loamy-sand forest twice (mean ± standard error = 2.98 ± 0.36 and 3.33 ± 0.69 Mg C ha −1 yr −1, method 1 and 2, respectively) as much as for the more fertile claysoil forest (1.51 ± 0.14, method 1, and from 1.03 ± 0.31 to 1.36 ± 0.23 Mg C ha −1 yr −1, method 2). Similarly, the average of standing crop fine-root mass was three times higher in the loamy-sand forest (5.47 ± 0.17 Mg C ha1) than in the more fertile soil (from 1.52 ± 0.08 a 1.82 ± 0.09 Mg C ha1). The standing crop fine-root mass also showed a temporal pattern related to rainfall, with the production of fine-roots decreasing substantially in the dry period of the year 2005. These results suggest that soil resources may play an important role in patterns of carbon allocation of below-ground components, not only driven the differences in the biomass and its production, but also in the time when it is produced. In Chapter 3, I assessed the three components of stand-level carbon allocation (biomass, NPP, and its partitioning) for the same forests evaluated in Chapter 2 (clay-soil forest and loamy-sand forest). We found differences in carbon allocation patterns between these two forests, showing that the forest on clay-soil had a higher aboveground and total biomass as well as a higher above-ground NPP than the loamy-sand forest. However, differences between the two types of forests in terms of stand-level NPP were smaller, as a consequence of different strategies in the carbon allocation of above- and below-ground components. The proportional allocation of NPP to new foliage production was relatively similar between the two forests. Our results of aboveground biomass increments and fine-root production suggest a possible trade-off between carbon allocation to fine-roots versus wood growth (as it has been reported by other authors), as opposed to the most commonly assumed trade-off between total above- and below-ground production. Despite these differences among forests in terms of carbon allocation components, the leaf area index showed differences between forests like total NPP, suggesting that the leaf area index is more indicative of total NPP than carbon allocation. In Chapter 4, I evaluated the spatial and temporal variation of carbon allocation components and forest dynamics of Amazon forests as well as their responses to climatic fluctuations. I evaluated the intra- and inter-annual variation of carbon allocation components and forest dynamics during the period 2004−2012 in five forests on different soils (clay, clay-loam, sandy-clay-loam, sandy-loam and loamy-sand), but growing under the same local precipitation regime in north-western Amazonia (Colombia). We were interested in examining if these forests respond similarly to rainfall fluctuations as many models predict, considering the following questions: (i) Is there a correlation in carbon allocation components and forest dynamics with precipitation? (ii) Is there a correlation among forests? (iii) Are temporal responses in leaf area index (LAI) indicative of variations of above-ground production or a reflection of changes in carbon allocation patterns among forests?. Overall, the correlation of above- and below-ground carbon allocation components with rainfall suggests that soils play an important role in the spatial and temporal differences of responses of these forests to rainfall fluctuations. On the one hand, most forests showed that the above-ground components are susceptible to rainfall fluctuations; however, there was a forest on loamy-sand that only showed a correlation with the below-ground component (fine-roots). On the other hand, despite the fact that north-western Amazonia is considered without a conspicuous dry season (defined as <100 mm month−1), litterfall and fine-root mass showed high seasonality and variability, particularly marked during the drought of 2005. Additionally, forests of the loam-soil group showed that litterfall respond to time-lags in rainfall as well as and the fine-root mass of the loamy-sand forest. With regard to forest dynamics, only the mortality rate of the loamy-sand forest was significantly correlated with rainfall (77%). The observed inter-annual variability of stem and biomass increments of individuals highlighted the importance of the mortality in the above-ground biomass increment. However, mortality rates and death type proportion did not show clear trends related to droughts. Interestingly, litterfall, above-ground biomass increment and recruitment rates of forests showed high correlation among forests, particularly within the loam-soil forests group. Nonetheless, LAI measured in the most contrasting forests (clay-soil and loamysand) was poorly correlated with rainfall but highly correlated between forests; LAI did not reflect the differences in the carbon allocation components, and their response to rainfall on these forests. Finally, the forests studied highlight that north-western Amazon forests are also susceptible to climate fluctuations, contrary to what has been proposed previously due to their lack of a pronounced dry season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background Gray scale images make the bulk of data in bio-medical image analysis, and hence, the main focus of many image processing tasks lies in the processing of these monochrome images. With ever improving acquisition devices, spatial and temporal image resolution increases, and data sets become very large. Various image processing frameworks exists that make the development of new algorithms easy by using high level programming languages or visual programming. These frameworks are also accessable to researchers that have no background or little in software development because they take care of otherwise complex tasks. Specifically, the management of working memory is taken care of automatically, usually at the price of requiring more it. As a result, processing large data sets with these tools becomes increasingly difficult on work station class computers. One alternative to using these high level processing tools is the development of new algorithms in a languages like C++, that gives the developer full control over how memory is handled, but the resulting workflow for the prototyping of new algorithms is rather time intensive, and also not appropriate for a researcher with little or no knowledge in software development. Another alternative is in using command line tools that run image processing tasks, use the hard disk to store intermediate results, and provide automation by using shell scripts. Although not as convenient as, e.g. visual programming, this approach is still accessable to researchers without a background in computer science. However, only few tools exist that provide this kind of processing interface, they are usually quite task specific, and don’t provide an clear approach when one wants to shape a new command line tool from a prototype shell script. Results The proposed framework, MIA, provides a combination of command line tools, plug-ins, and libraries that make it possible to run image processing tasks interactively in a command shell and to prototype by using the according shell scripting language. Since the hard disk becomes the temporal storage memory management is usually a non-issue in the prototyping phase. By using string-based descriptions for filters, optimizers, and the likes, the transition from shell scripts to full fledged programs implemented in C++ is also made easy. In addition, its design based on atomic plug-ins and single tasks command line tools makes it easy to extend MIA, usually without the requirement to touch or recompile existing code. Conclusion In this article, we describe the general design of MIA, a general purpouse framework for gray scale image processing. We demonstrated the applicability of the software with example applications from three different research scenarios, namely motion compensation in myocardial perfusion imaging, the processing of high resolution image data that arises in virtual anthropology, and retrospective analysis of treatment outcome in orthognathic surgery. With MIA prototyping algorithms by using shell scripts that combine small, single-task command line tools is a viable alternative to the use of high level languages, an approach that is especially useful when large data sets need to be processed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present an efficient hole filling strategy that improves the quality of the depth maps obtained with the Microsoft Kinect device. The proposed approach is based on a joint-bilateral filtering framework that includes spatial and temporal information. The missing depth values are obtained applying iteratively a joint-bilateral filter to their neighbor pixels. The filter weights are selected considering three different factors: visual data, depth information and a temporal-consistency map. Video and depth data are combined to improve depth map quality in presence of edges and homogeneous regions. Finally, the temporal-consistency map is generated in order to track the reliability of the depth measurements near the hole regions. The obtained depth values are included iteratively in the filtering process of the successive frames and the accuracy of the hole regions depth values increases while new samples are acquired and filtered

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective data summarization methods that use AI techniques can help humans understand large sets of data. In this paper, we describe a knowledge-based method for automatically generating summaries of geospatial and temporal data, i.e. data with geographical and temporal references. The method is useful for summarizing data streams, such as GPS traces and traffic information, that are becoming more prevalent with the increasing use of sensors in computing devices. The method presented here is an initial architecture for our ongoing research in this domain. In this paper we describe the data representations we have designed for our method, our implementations of components to perform data abstraction and natural language generation. We also discuss evaluation results that show the ability of our method to generate certain types of geospatial and temporal descriptions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El enriquecimiento del conocimiento sobre la Irradiancia Solar (IS) a nivel de superficie terrestre, así como su predicción, cobran gran interés para las Energías Renovables (ER) - Energía Solar (ES)-, y para distintas aplicaciones industriales o ecológicas. En el ámbito de las ER, el uso óptimo de la ES implica contar con datos de la IS en superficie que ayuden tanto, en la selección de emplazamientos para instalaciones de ES, como en su etapa de diseño (dimensionar la producción) y, finalmente, en su explotación. En este último caso, la observación y la predicción es útil para el mercado energético, la planificación y gestión de la energía (generadoras y operadoras del sistema eléctrico), especialmente en los nuevos contextos de las redes inteligentes de transporte. A pesar de la importancia estratégica de contar con datos de la IS, especialmente los observados por sensores de IS en superficie (los que mejor captan esta variable), estos no siempre están disponibles para los lugares de interés ni con la resolución espacial y temporal deseada. Esta limitación se une a la necesidad de disponer de predicciones a corto plazo de la IS que ayuden a la planificación y gestión de la energía. Se ha indagado y caracterizado las Redes de Estaciones Meteorológicas (REM) existentes en España que publican en internet sus observaciones, focalizando en la IS. Se han identificado 24 REM (16 gubernamentales y 8 redes voluntarios) que aglutinan 3492 estaciones, convirtiéndose éstas en las fuentes de datos meteorológicos utilizados en la tesis. Se han investigado cinco técnicas de estimación espacial de la IS en intervalos de 15 minutos para el territorio peninsular (3 técnicas geoestadísticas, una determinística y el método HelioSat2 basado en imágenes satelitales) con distintas configuraciones espaciales. Cuando el área de estudio tiene una adecuada densidad de observaciones, el mejor método identificado para estimar la IS es el Kriging con Regresión usando variables auxiliares -una de ellas la IS estimada a partir de imágenes satelitales-. De este modo es posible estimar espacialmente la IS más allá de los 25 km identificados en la bibliografía. En caso contrario, se corrobora la idoneidad de utilizar estimaciones a partir de sensores remotos cuando la densidad de observaciones no es adecuada. Se ha experimentado con el modelado de Redes Neuronales Artificiales (RNA) para la predicción a corto plazo de la IS utilizando observaciones próximas (componentes espaciales) en sus entradas y, los resultados son prometedores. Así los niveles de errores disminuyen bajo las siguientes condiciones: (1) cuando el horizonte temporal de predicción es inferior o igual a 3 horas, las estaciones vecinas que se incluyen en el modelo deben encentrarse a una distancia máxima aproximada de 55 km. Esto permite concluir que las RNA son capaces de aprender cómo afectan las condiciones meteorológicas vecinas a la predicción de la IS. ABSTRACT ABSTRACT The enrichment of knowledge about the Solar Irradiance (SI) at Earth's surface and its prediction, have a high interest for Renewable Energy (RE) - Solar Energy (SE) - and for various industrial and environmental applications. In the field of the RE, the optimal use of the SE involves having SI surface to help in the selection of sites for facilities ES, in the design stage (sizing energy production), and finally on their production. In the latter case, the observation and prediction is useful for the market, planning and management of the energy (generators and electrical system operators), especially in new contexts of smart transport networks (smartgrid). Despite the strategic importance of SI data, especially those observed by sensors of SI at surface (the ones that best measure this environmental variable), these are not always available to the sights and the spatial and temporal resolution desired. This limitation is bound to the need for short-term predictions of the SI to help planning and energy management. It has been investigated and characterized existing Networks of Weather Stations (NWS) in Spain that share its observations online, focusing on SI. 24 NWS have been identified (16 government and 8 volunteer networks) that implies 3492 stations, turning it into the sources of meteorological data used in the thesis. We have investigated five technical of spatial estimation of SI in 15 minutes to the mainland (3 geostatistical techniques and HelioSat2 a deterministic method based on satellite images) with different spatial configurations. When the study area has an adequate density of observations we identified the best method to estimate the SI is the regression kriging with auxiliary variables (one of them is the SI estimated from satellite images. Thus it is possible to spatially estimate the SI beyond the 25 km identified in the literature. Otherwise, when the density of observations is inadequate the appropriateness is using the estimates values from remote sensing. It has been experimented with Artificial Neural Networks (ANN) modeling for predicting the short-term future of the SI using observations from neighbor’s weather stations (spatial components) in their inputs, and the results are promising. The error levels decrease under the following conditions: (1) when the prediction horizon is less or equal than 3 hours the best models are the ones that include data from the neighboring stations (at a maximum distance of 55 km). It is concluded that the ANN is able to learn how weather conditions affect neighboring prediction of IS at such Spatio-temporal horizons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, it has become evident the need to seek sustainable development models that address challenges arising in a variety of contexts. The resilience concept appears connected to the ability of people to cope with adversities that inevitably arise due to context dynamics, at different spatial and temporal scales. This concept is related to the model known as Working With People (WWP), focused on rural development projects planning, management and evaluation, from the integration of three dimensions: technical-entrepreneurial, ethical-social and political-contextual. The research reported is part of the RETHINK European Project, whose overall aim is farm modernization and rural resilience. The resilience concept has been analyzed, in the scope of rural development projects management, and a relationship with the WWP model has been established. To this end, a thorough review of the scientific literature concerning this topic has been addressed, in order to develop the state of the art of the different concepts and models involved. A conceptual proposal for the integration of resilience in rural development projects sustainable management, through the three-dimensional WWP model is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An understanding of spatial patterns of plant species diversity and the factors that drive those patterns is critical for the development of appropriate biodiversity management in forest ecosystems. We studied the spatial organization of plants species in human- modified and managed oak forests (primarily, Quercus faginea) in the Central Pre- Pyrenees, Spain. To test whether plant community assemblages varied non-randomly across the spatial scales, we used multiplicative diversity partitioning based on a nested hierarchical design of three increasingly coarser spatial scales (transect, stand, region). To quantify the importance of the structural, spatial, and topographical characteristics of stands in patterning plant species assemblages and identify the determinants of plant diversity patterns, we used canonical ordination. We observed a high contribution of ˟-diversity to total -diversity and found ˟-diversity to be higher and ˞-diversity to be lower than expected by random distributions of individuals at different spatial scales. Results, however, partly depended on the weighting of rare and abundant species. Variables expressing the historical management intensities of the stand such as mean stand age, the abundance of the dominant tree species (Q. faginea), age structure of the stand, and stand size were the main factors that explained the compositional variation in plant communities. The results indicate that (1) the structural, spatial, and topographical characteristics of the forest stands have the greatest effect on diversity patterns, (2) forests in landscapes that have different land use histories are environmentally heterogeneous and, therefore, can experience high levels of compositional differentiation, even at local scales (e.g., within the same stand). Maintaining habitat heterogeneity at multiple spatial scales should be considered in the development of management plans for enhancing plant diversity and related functions in human-altered forests