930 resultados para Spatial Query Processing And Optimization
Resumo:
The renin-angiotensin aldosterone system (RAAS) is central to the pathogenesis of cardiovascular disease. RAAS inhibition can reduce blood pressure, prevent target organ damage in hypertension and diabetes, and improve outcomes in patients with heart failure and/or myocardial infarction. This review presents the history of RAAS inhibition including a summary of key heart failure, myocardial infarction, hypertension and atrial fibrillation trials. Recent developments in RAAS inhibition are discussed including implementation and optimization of current drug therapies. Finally, ongoing clinical trials, opportunities for future trials and issues related to the barriers and approvability of novel RAAS inhibitors are highlighted.
Resumo:
A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.
Resumo:
Vision provides a primary sensory input for food perception. It raises expectations on taste and nutritional value and drives acceptance or rejection. So far, the impact of visual food cues varying in energy content on subsequent taste integration remains unexplored. Using electrical neuroimaging, we assessed whether high- and low-calorie food cues differentially influence the brain processing and perception of a subsequent neutral electric taste. When viewing high-calorie food images, participants reported the subsequent taste to be more pleasant than when low-calorie food images preceded the identical taste. Moreover, the taste-evoked neural activity was stronger in the bilateral insula and the adjacent frontal operculum (FOP) within 100 ms after taste onset when preceded by high- versus low-calorie cues. A similar pattern evolved in the anterior cingulate (ACC) and medial orbitofrontal cortex (OFC) around 180 ms, as well as, in the right insula, around 360 ms. The activation differences in the OFC correlated positively with changes in taste pleasantness, a finding that is an accord with the role of the OFC in the hedonic evaluation of taste. Later activation differences in the right insula likely indicate revaluation of interoceptive taste awareness. Our findings reveal previously unknown mechanisms of cross-modal, visual-gustatory, sensory interactions underlying food evaluation.
Resumo:
This paper presents multiple kernel learning (MKL) regression as an exploratory spatial data analysis and modelling tool. The MKL approach is introduced as an extension of support vector regression, where MKL uses dedicated kernels to divide a given task into sub-problems and to treat them separately in an effective way. It provides better interpretability to non-linear robust kernel regression at the cost of a more complex numerical optimization. In particular, we investigate the use of MKL as a tool that allows us to avoid using ad-hoc topographic indices as covariables in statistical models in complex terrains. Instead, MKL learns these relationships from the data in a non-parametric fashion. A study on data simulated from real terrain features confirms the ability of MKL to enhance the interpretability of data-driven models and to aid feature selection without degrading predictive performances. Here we examine the stability of the MKL algorithm with respect to the number of training data samples and to the presence of noise. The results of a real case study are also presented, where MKL is able to exploit a large set of terrain features computed at multiple spatial scales, when predicting mean wind speed in an Alpine region.
Resumo:
BACKGROUND AND AIMS: In a mixed-ploidy population, strong frequency-dependent mating will lead to the elimination of the less common cytotype, unless prezygotic barriers enhance assortative mating. However, such barriers favouring cytotype coexistence have only rarely been explored. Here, an assessment is made of the mechanisms involved in formation of mixed-ploidy populations and coexistence of diploid plants and their closely related allotetraploid derivates from the Centaurea stoebe complex (Asteraceae). METHODS: An investigation was made of microspatial and microhabitat distribution, life-history and fitness traits, flowering phenology, genetic relatedness of cytotypes and intercytotype gene flow (cpDNA and microsatellites) in six mixed-ploidy populations in Central Europe. KEY RESULTS: Diploids and tetraploids were genetically differentiated, thus corroborating the secondary origin of contact zones. The cytotypes were spatially segregated at all sites studied, with tetraploids colonizing preferentially drier and open microhabitats created by human-induced disturbances. Conversely, they were rare in more natural microsites and microsites with denser vegetation despite their superior persistence ability (polycarpic life cycle). The seed set of tetraploid plants was strongly influenced by their frequency in mixed-ploidy populations. Triploid hybrids originated from bidirectional hybridizations were extremely rare and almost completely sterile, indicating a strong postzygotic barrier between cytotypes. CONCLUSIONS: The findings suggest that tetraploids are later immigrants into already established diploid populations and that anthropogenic activities creating open niches favouring propagule introductions were the major factor shaping the non-random distribution and habitat segregation of cytotypes at fine spatial scale. Establishment and spread of tetraploids was further facilitated by their superior persistence through the perennial life cycle. The results highlight the importance of non-adaptive spatio-temporal processes in explaining microhabitat and microspatial segregation of cytotypes.
Resumo:
This work is divided into three volumes: Volume I: Strain-Based Damage Detection; Volume II: Acceleration-Based Damage Detection; Volume III: Wireless Bridge Monitoring Hardware. Volume I: In this work, a previously-developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The statistical damage-detection tool, control-chart-based damage-detection methodologies, were further investigated and advanced. For the validation of the damage-detection approaches, strain data were obtained from a sacrificial specimen attached to the previously-utilized US 30 Bridge over the South Skunk River (in Ames, Iowa), which had simulated damage,. To provide for an enhanced ability to detect changes in the behavior of the structural system, various control chart rules were evaluated. False indications and true indications were studied to compare the damage detection ability in regard to each methodology and each control chart rule. An autonomous software program called Bridge Engineering Center Assessment Software (BECAS) was developed to control all aspects of the damage detection processes. BECAS requires no user intervention after initial configuration and training. Volume II: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. The objective of this part of the project was to validate/integrate a vibration-based damage-detection algorithm with the strain-based methodology formulated by the Iowa State University Bridge Engineering Center. This report volume (Volume II) presents the use of vibration-based damage-detection approaches as local methods to quantify damage at critical areas in structures. Acceleration data were collected and analyzed to evaluate the relationships between sensors and with changes in environmental conditions. A sacrificial specimen was investigated to verify the damage-detection capabilities and this volume presents a transmissibility concept and damage-detection algorithm that show potential to sense local changes in the dynamic stiffness between points across a joint of a real structure. The validation and integration of the vibration-based and strain-based damage-detection methodologies will add significant value to Iowa’s current and future bridge maintenance, planning, and management Volume III: In this work, a previously developed structural health monitoring (SHM) system was advanced toward a ready-for-implementation system. Improvements were made with respect to automated data reduction/analysis, data acquisition hardware, sensor types, and communication network architecture. This report volume (Volume III) summarizes the energy harvesting techniques and prototype development for a bridge monitoring system that uses wireless sensors. The wireless sensor nodes are used to collect strain measurements at critical locations on a bridge. The bridge monitoring hardware system consists of a base station and multiple self-powered wireless sensor nodes. The base station is responsible for the synchronization of data sampling on all nodes and data aggregation. Each wireless sensor node include a sensing element, a processing and wireless communication module, and an energy harvesting module. The hardware prototype for a wireless bridge monitoring system was developed and tested on the US 30 Bridge over the South Skunk River in Ames, Iowa. The functions and performance of the developed system, including strain data, energy harvesting capacity, and wireless transmission quality, were studied and are covered in this volume.
Resumo:
The overall system is designed to permit automatic collection of delamination field data for bridge decks. In addition to measuring and recording the data in the field, the system provides for transferring the recorded data to a personal computer for processing and plotting. This permits rapid turnaround from data collection to a finished plot of the results in a fraction of the time previously required for manual analysis of the analog data captured on a strip chart recorder. In normal operation the Delamtect provides an analog voltage for each of two channels which is proportional to the extent of any delamination. These voltages are recorded on a strip chart for later visual analysis. An event marker voltage, produced by a momentary push button on the handle, is also provided by the Delamtect and recorded on a third channel of the analog recorder.
Resumo:
The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.
Resumo:
In the field of thrombosis and haemostasis, many preanalytical variables influence the results of coagulation assays and measures to limit potential results variations should be taken. To our knowledge, no paper describing the development and maintenance of a haemostasis biobank has been previously published. Our description of the biobank of the Swiss cohort of elderly patients with venous thromboembolism (SWITCO65+) is intended to facilitate the set-up of other biobanks in the field of thrombosis and haemostasis. SWITCO65+ is a multicentre cohort that prospectively enrolled consecutive patients aged ≥65 years with venous thromboembolism at nine Swiss hospitals from 09/2009 to 03/2012. Patients will be followed up until December 2013. The cohort includes a biobank with biological material from each participant taken at baseline and after 12 months of follow-up. Whole blood from all participants is assayed with a standard haematology panel, for which fresh samples are required. Two buffy coat vials, one PAXgene Blood RNA System tube and one EDTA-whole blood sample are also collected at baseline for RNA/DNA extraction. Blood samples are processed and vialed within 1 h of collection and transported in batches to a central laboratory where they are stored in ultra-low temperature archives. All analyses of the same type are performed in the same laboratory in batches. Using multiple core laboratories increased the speed of sample analyses and reduced storage time. After recruiting, processing and analyzing the blood of more than 1,000 patients, we determined that the adopted methods and technologies were fit-for-purpose and robust.
Resumo:
A. Costanza, K. Weber, S. Gandy, C. Bouras, P. R. Hof, P. Giannakopoulos and A. Canuto (2011) Neuropathology and Applied Neurobiology37, 570-584 Contact sport-related chronic traumatic encephalopathy in the elderly: clinical expression and structural substrates Professional boxers and other contact sport athletes are exposed to repetitive brain trauma that may affect motor functions, cognitive performance, emotional regulation and social awareness. The term of chronic traumatic encephalopathy (CTE) was recently introduced to regroup a wide spectrum of symptoms such as cerebellar, pyramidal and extrapyramidal syndromes, impairments in orientation, memory, language, attention, information processing and frontal executive functions, as well as personality changes and behavioural and psychiatric symptoms. Magnetic resonance imaging usually reveals hippocampal and vermis atrophy, a cavum septum pellucidum, signs of diffuse axonal injury, pituitary gland atrophy, dilated perivascular spaces and periventricular white matter disease. Given the partial overlapping of the clinical expression, epidemiology and pathogenesis of CTE and Alzheimer's disease (AD), as well as the close association between traumatic brain injuries (TBIs) and neurofibrillary tangle formation, a mixed pathology promoted by pathogenetic cascades resulting in either CTE or AD has been postulated. Molecular studies suggested that TBIs increase the neurotoxicity of the TAR DNA-binding protein 43 (TDP-43) that is a key pathological marker of ubiquitin-positive forms of frontotemporal dementia (FTLD-TDP) associated or not with motor neurone disease/amyotrophic lateral sclerosis (ALS). Similar patterns of immunoreactivity for TDP-43 in CTE, FTLD-TDP and ALS as well as epidemiological correlations support the presence of common pathogenetic mechanisms. The present review provides a critical update of the evolution of the concept of CTE with reference to its neuropathological definition together with an in-depth discussion of the differential diagnosis between this entity, AD and frontotemporal dementia.
Resumo:
Cette thèse explore dans quelle mesure la poursuite d'un but de performance-approche (i.e., le désir de surpasser autrui et de démontrer ses compétences) favorise, ou au contraire endommage, la réussite et l'apprentissage-une question toujours largement débattue dans la littérature. Quatre études menées en laboratoire ont confirmé cette hypothèse et démontré que la poursuite du but de performance-approche amène les individus à diviser leur attention entre d'une part la réalisation de la tâche évaluée, et d'autre part la gestion de préoccupations liées à l'atteinte du but-ceci empêchant une concentration efficace sur les processus de résolution de la tâche. Dans une deuxième ligne de recherche, nous avons ensuite démontré que cette distraction est exacerbée chez les individus les plus performants et ayant le plus l'habitude de réussir, ceci dérivant d'une pression supplémentaire liée au souhait de maintenir le statut positif de « bon élève ». Enfin, notre troisième ligne de recherche a cherché à réconcilier ces résultats-pointant l'aspect distractif du but de performance-approche-avec le profil se dégageant des études longitudinales rapportées dans la littérature-associant ce but avec la réussite académique. Ainsi, nous avons mené une étude longitudinale testant si l'adoption du but de performance-approche en classe pourrait augmenter la mise en oeuvre de stratégies d'étude tactiquement dirigées vers la performance-favorisant une réussite optimale aux tests. Nos résultats ont apporté des éléments en faveur de cette hypothèse, mais uniquement chez les élèves de bas niveau. Ainsi, l'ensemble de nos résultats permet de mettre en lumière les processus cognitifs à l'oeuvre lors de la poursuite du but de performance-approche, ainsi que d'alimenter le débat concernant leur aspect bénéfique ou nuisible en contexte éducatif. -- In this dissertation, we propose to investigate whether the pursuit of performance-approach goals (i.e., the desire to outperform others and appear talented) facilitates or rather endangers achievement and learning-an issue that is still widely discussed in the achievement goal literature. Four experiments carried out in a laboratory setting have provided evidence that performance- approach goals create a divided-attention situation that leads cognitive resources to be divided between task processing and the activation of goal-attainment concerns-which jeopardizes full cognitive immersion in the task. Then, in a second research line, we found evidence that high- achievers (i.e., those individuals who are the most used to succeed) experience, under evaluative contexts, heightened pressure to excel at the task, deriving from concerns associated with the preservation of their "high-achiever" status. Finally, a third research line was designed to try to reconcile results stemming from our laboratory studies with the overall profile emerging from longitudinal research-which have consistently found performance-approach goals to be a positive predictor of students' test scores. We thus set up a longitudinal study so as to test whether students' adoption of performance-approach goals in a long-term classroom setting enhances the implementation of strategic study behaviors tactically directed toward goal-attainment, hence favoring test performance. Our findings brought support for this hypothesis, but only for low-achieving students. Taken together, our findings shed new light on the cognitive processes at play during the pursuit of performance-approach goals, and are likely to fuel the debate regarding whether performance-approach goals should be encouraged or not in educational settings.
Resumo:
Developmentally regulated mechanisms involving alternative RNA splicing and/or polyadenylation, as well as transcription termination, are implicated in controlling the levels of secreted mu (mu s), membrane mu (mu m) and delta immunoglobulin (Ig) heavy chain mRNAs during B cell differentiation (mu gene encodes the mu heavy chain). Using expression vectors constructed with genomic DNA segments composed of the mu m polyadenylation signal region, we analyzed poly(A) site utilization and termination of transcription in stably transfected myeloma cells and in murine fibroblast L cells. We found that the gene segment containing the mu m poly(A) signals, along with 536 bp of downstream flanking sequence, acted as a transcription terminator in both myeloma cells and L cell fibroblasts. Neither a 141-bp DNA fragment (which directed efficient polyadenylation at the mu m site), nor the 536-bp flanking nucleotide sequence alone, were sufficient to obtain a similar regulation. This shows that the mu m poly(A) region plays a central role in controlling developmentally regulated transcription termination by blocking downstream delta gene expression. Because this gene segment exhibited the same RNA processing and termination activities in fibroblasts, it appears that these processes are not tissue-specific.
Resumo:
Immune responses against tumor-associated antigens rely on efficient epitope presentation. The melanoma-associated antigen (Ag) gp100 contains HLA-A*0201 ligands that are characterized by low to medium binding affinity, among which gp100(209-217) is the most prominent (Kawakami et al., J Immunol 154:3961-3968, 1995). While this epitope is a natural T-cell target, it primes with low-efficiency T-cell responses during immunization. A modified gp100 epitope, gp100(209-217T210M), that contains a Thr to Met substitution at position 2 of the antigenic nonamer is characterized by high binding affinity for HLA-A*0201 and elicits strong and clinically effective T-cell responses. This higher affinity is believed to represent the sole reason for enhanced immunogenicity. Contrasting with this observation is the unpredictable relationship between affinity and immunogenicity observed in other antigen systems. In addition, we noted a striking difference between the capability of endogenously processed gp100(209-217) and gp100(209-217T210M) to induce T-cell responses in an in vitro model. Therefore, we questioned whether factors other than HLA-affinity might play a role in determining the immunogenicity of these epitopes. In the present study, we evaluated the in vitro proteasomal cleavages of 23meric precursor peptides encompassing the native sequence (gp100(201-223)) or the modified sequence (gp100(201-223T210M)). Here we show that the standard proteasome liberates the C-termini of both antigenic peptides but not the N-termini. Quantitative analysis of the digestion products revealed that more of the fragments displaying the final C-termini were produced from the wild-type precursor. However, a stronger TCR engagement was observed when fractions of digested gp100(201-223T210M) were used to activate an HLA-A*0201-expressing target T-cell clone. This difference was also found using separately produced, synthetic nonamers. In conclusion, the high binding affinity of gp100(209-217T210M) seems to compensate for possible differences in proteasomal cleavage at the biological level. Since the final antigenic nonamer is not directly produced by the proteasome, additional further factors may influence the antigenic peptide availability, such as post-proteasomal processing and intracellular peptide transport.
Resumo:
We evaluated isothermal microcalorimetry for real-time susceptibility testing of non-Aspergillus molds. MIC and minimal effective concentration (MEC) values of Mucorales (n = 4), Fusarium spp. (n = 4), and Scedosporium spp. (n = 4) were determined by microbroth dilution according to the Clinical Laboratory Standard Institute M38-A2 guidelines. Heat production of molds was measured at 37 °C in Sabouraud dextrose broth inoculated with 2.5 × 10(4) spores/mL in the presence of amphotericin B, voriconazole, posaconazole, caspofungin, and anidulafungin. As determined by microcalorimetry, amphotericin B was the most active agent against Mucorales (MHIC 0.06-0.125 μg/mL) and Fusarium spp. (MHIC 1-4 μg/mL), whereas voriconazole was the most active agent against Scedosporium spp. (MHIC 0.25 to 8 μg/mL). The percentage of agreement (within one 2-fold dilution) between the MHIC and MIC (or MEC) was 67%, 92%, 75%, and 83% for amphotericin B, voriconazole, posaconazole, and caspofungin, respectively. Microcalorimetry provides additional information on timing of antifungal activity, enabling further investigation of drug-mold and drug-drug interaction, and optimization of antifungal treatment.
Resumo:
ABSTRACTSchizophrenia is a major psychiatric disorder occurring with a prevalence of 1% in the worldwide population. It develops progressively with psychosis onset in late adolescence or earlyadulthood. The disorder can take many different facets and has a highly diffuse anddistributed neuropathology including deficits in major neurotransmitter systems,myelination, stress regulation, and metabolism. The delayed onset and the heterogeneouspathology suggest that schizophrenia is a developmental disease that arises from interplayof genetic and environmental factors during sensitive periods. Redox dysregulation due to animbalance between pro-oxidants and antioxidant defence mechanisms is among the riskfactors for schizophrenia. Glutathione (GSH) is the major cellular redox regulator andantioxidant. Levels of GSH are decreased in cerebrospinal fluid, prefrontal cortex and postmortemstriatum of schizophrenia patients. Moreover, polymorphisms of the key GSHsynthesizingenzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, are associatedwith the disease, suggesting that GSH deficit is of genetic origin. Here we used miceknockout (KO) for the GCLM gene, which display chronic GSH deficit (~70 to 80% decrease)to investigate the direct link between redox dysregulation and schizophrenia. Accordingly,we evaluated whether GCLM KO compared to normal wildtype mice display behavioralchanges that relate to schizophrenia symptoms and whether their brains showmorphological, functional or metabolic alterations that resemble those in patients.Moreover, we exposed pubertal GCLM mice to repeated mild stress and measured theirhormonal and behavioral stress reactivity. Our data show that chronic GSH deficit isassociated with altered emotion- and stress-related behaviors, deficient prepulse inhibition,pronounced amphetamine-induced hyperlocomotion but normal spatial learning andworking memory. These changes represent important schizophrenia endophenotypes.Moreover, this particular pattern of change indicates impairment of the ventralhippocampus (VH) and related circuitry as opposed to the dorsal hippocampus (DH), which isimplicated in spatial information processing. This is consistent with a selective deficit ofparvalbumin positive interneurons and gamma oscillation in the VH but not DH. Increasedlevels of circulating stress hormones in KO mice following pubertal stress corroborate VHdysfunction as it is involved in negative feedback control of the stress response. VHstructural and functional deficits are frequently found in the schizophrenic brain. Metabolicevaluation of the developing GCLM KO anterior cortex using in vivo magnetic resonancespectroscopy revealed elevated glutamine (Gln), glutamate (Glu), Gln/Glu and N-acetylaspartate(NAA) during the pre-pubertal period. Similar changes are reported in earlyschizophrenia. Overall, we observe phenotypic anomalies in GSH deficient GCLM KO micethat correspond to major schizophrenia endophenotypes. This supports an important rolefor redox dysregulation in schizophrenia and validates the GCLM KO mouse as model for thedisease. Moreover, our results indicate that puberty may be a sensitive period for redoxsensitivechanges highliting the importance of early intervention. Gln, Gln/Glu, Glu and NAAmay qualify as early metabolic biomarkers to identify young at-risk individuals. Since chronictreatment with NAC normalized most metabolic changes in GCLM KO mice, NAC may be oneadjunct treatment of choice for early intervention in patients.RESUMELa schizophrénie est une maladie psychiatrique majeure avec une prévalence de 1% dans lapopulation. Son développement est progressif, les premières psychoses apparaissant àl'adolescence ou au début de l'âge adulte. La maladie a plusieurs présentations et uneneuropathologie étendue, qui inclut des déficits neurochimiques, métaboliques, de lamyélination et de la régulation du stress. L'émergence tardive et l'hétérogénéité de lapathologie suggèrent que la schizophrénie est une maladie développementale, favorisée pardes facteurs génétiques et environnementaux durant des périodes sensibles. La dérégulationrédox, due à un déséquilibre entre facteurs pro-oxidantes et défenses anti-oxidantes,constitue un facteur de risque. Le glutathion (GSH) est le principal régulateur rédox et antioxidantdes cellules, ses taux sont diminués dans le liquide céphalorachidien, le cortexpréfrontal et le striatum de patients. De plus, des variations du gène codant la sous-unitémodulatrice (GCLM) de la glutamate-cystéine ligase, enzyme de synthèse du GSH, sontassociés la maladie, suggérant que le déficit observé chez les patients est d'originegénétique. Nous avons donc utilisé des souris ayant une délétion du gène GCLM (KO), quiont un déficit chronique en GSH (70-80%), afin d'étudier le lien entre une dérégulation rédoxet la schizophrénie. Nous avons évalué si ces souris présentent des altérationscomportementales analogues aux symptômes de la maladie, et des modificationsstructurelles, fonctionnelles et métaboliques au niveau du cerveau, ressemblant à celles despatients. De plus, nous avons soumis les souris à des stresses modérés durant la puberté,puis mesuré les réponses hormonales et comportementales. Les animaux présentent undéficit pré-attentionnel du traitement des informations moto-sensorielles, un déficit pourcertains apprentissages, une réponse accrue à l'amphétamine, mais leurs mémoires spatialeet de travail sont préservées. Ces atteintes comportementales sont analogues à certainsendophénotypes de la schizophrénie. De plus, ces changements comportementaux sontlargement expliqués par une perturbation morphologique et fonctionnelle de l'hippocampeventral (HV). Ainsi, nous avons observé un déficit sélectif des interneurones immunoréactifsà la parvalbumine et une désynchronisation neuronale dans l'HV. L'hippocampe dorsal,impliqué dans l'orientation spatiale, demeure en revanche intact. L'augmentationd'hormones de stress dans le sang des souris KO suite à un stress prépubertal soutien aussil'hypothèse d'une dysfonction de l'HV, connu pour moduler ce type de réponse. Des déficitsstructurels et fonctionnels dans l'hippocampe antérieur (ventral) ont d'ailleurs été rapportéschez des patients schizophrènes. Par de résonance magnétique, nous avons également suivile profil métabolique du le cortex antérieur au cours du développement postnatal des sourisKO. Ces mesures ont révélé des taux élevés de glutamine (Gln), glutamate (Glu), du ratioGln/Glu, et de N-acétyl-aspartate (NAA) durant la période prépubertale. Des altérationssimilaires sont décrites chez les patients durant la phase précoce. Nous avons donc révélédes anomalies phénotypiques chez les souris GCLM KO qui reflètent certainsendophénotypes de la schizophrénie. Nos résultats appuient donc le rôle d'une dérégulationrédox dans l'émergence de la maladie et le potentiel des souris KO comme modèle. De plus,cette étude met en évidence la puberté comme période particulièrement sensible à unedérégulation rédox, renforçant l'importance d'une intervention thérapeutique précoce. Dansce cadre, Gln, Gln/Glu, Glu and NAA seraient des biomarqueurs clés pour identifier de jeunesindividus à risque. De part son efficacité dans notre modèle, NAC pourrait être unesubstance de choix dans le traitement précoce des patients.