956 resultados para Spatial Point Pattern analysis
Resumo:
We investigate numerically the dependence of higher harmonics of the space-charge field on the detuning frequency between the pump waves, which form a running interference pattern. Bistability and hysteresis of harmonics are predicted for a contrast of the interference pattern m =(0.25-0.3). For contrasts m˜1 and small detuning frequencies we show the existence of a narrow resonance, connected with the nonlinear excitation of a slowly decreasing sequence of spatial harmonics. For experiments we use a BSO crystal in the optical configuration which avoids nonlinear optical distortions. The experimental data show good qualitative agreement with theory.
Resumo:
We present information-theory analysis of the tradeoff between bit-error rate improvement and the data-rate loss using skewed channel coding to suppress pattern-dependent errors in digital communications. Without loss of generality, we apply developed general theory to the particular example of a high-speed fiber communication system with a strong patterning effect. © 2007 IEEE.
Resumo:
DUE TO INCOMPLETE PAPERWORK, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
We develop, implement and study a new Bayesian spatial mixture model (BSMM). The proposed BSMM allows for spatial structure in the binary activation indicators through a latent thresholded Gaussian Markov random field. We develop a Gibbs (MCMC) sampler to perform posterior inference on the model parameters, which then allows us to assess the posterior probabilities of activation for each voxel. One purpose of this article is to compare the HJ model and the BSMM in terms of receiver operating characteristics (ROC) curves. Also we consider the accuracy of the spatial mixture model and the BSMM for estimation of the size of the activation region in terms of bias, variance and mean squared error. We perform a simulation study to examine the aforementioned characteristics under a variety of configurations of spatial mixture model and BSMM both as the size of the region changes and as the magnitude of activation changes.
Resumo:
This paper presents the main concepts of a project under development concerning the analysis process of a scene containing a large number of objects, represented as unstructured point clouds. To achieve what we called the "optimal scene interpretation" (the shortest scene description satisfying the MDL principle) we follow an approach for managing 3-D objects based on a semantic framework based on ontologies for adding and sharing conceptual knowledge about spatial objects.
Resumo:
What is the connection between the hotel and fashion industry? The authors aim to answer this question approaching from different aspects. It can be stated that both of these industries are harmful for the environment from the point of sustainability. On the other hand there is a common solution from the viewpoint of sustainability: the uniforms and the primary materials, which are used during the production, such as the man-made and natural fibres. In our research the authors introduce the main problems which are related to the fashion industry, especially focusing on producing fibres from the viewpoint of sustainability. We introduce the solution for the fashion industry based on the literature and also present the emerging problems and solutions of the hotel industry based on the best practices. As a part of it, we are introducing the best practices from the hotel industry, where environmentally friendly uniforms are used. Finally, as a primary research part of our paper, we interpret the results of a Hungarian case-study.
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems—stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
The purpose of this study was to better understand the study behaviors and habits of university undergraduate students. It was designed to determine whether undergraduate students could be grouped based on their self-reported study behaviors and if any grouping system could be determined, whether group membership was related to students’ academic achievement. A total of 152 undergraduate students voluntarily participated in the current study by completing the Study Behavior Inventory instrument. All participants were enrolled in fall semester of 2010 at Florida International University. The Q factor analysis technique using principal components extraction and a varimax rotation was used in order to examine the participants in relation to each other and to detect a pattern of intercorrelations among participants based on their self-reported study behaviors. The Q factor analysis yielded a two factor structure representing two distinct student types among participants regarding their study behaviors. The first student type (i.e., Factor 1) describes proactive learners who organize both their study materials and study time well. Type 1 students are labeled “Proactive Learners with Well-Organized Study Behaviors”. The second type (i.e., Factor 2) represents students who are poorly organized as well as being very likely to procrastinate. Type 2 students are labeled Disorganized Procrastinators. Hierarchical linear regression was employed to examine the relationship between student type and academic achievement as measured by current grade point averages (GPAs). The results showed significant differences in GPAs between Type 1 and Type 2 students at the .05 significance level. Furthermore, student type was found to be a significant predictor of academic achievement beyond and above students’ attribute variables including sex, age, major, and enrollment status. The study has several implications for educational researchers, practitioners, and policy makers in terms of improving college students' learning behaviors and outcomes.
Resumo:
Over the past 200 years, an estimated 53% (about 47 million ha) of the original wetlands in the conterminous United States have been lost, mainly as a result of various human activities. Despite the importance of wetlands (particularly along the coast), and a longstanding federal policy framework meant to protect their integrity, the cumulative impact on these natural systems over large areas is poorly understood. We address this lack of research by mapping and conducting descriptive spatial analyses of federal wetland alteration permits (pursuant to section 404 of the Clean Water Act) across 85 watersheds in Florida and coastal Texas from 1991 to 2003. Results show that more than half of the permits issued in both states (60%) fell under the Nationwide permitting category. Permits issued in Texas were typically located outside of urban areas (78%) and outside 100-year floodplains (61%). More than half of permits issued in Florida were within urban areas (57%) and outside of 100-year floodplains (51%). The most affected wetlands types were estuarine in Texas (47%) and palustrine in Florida (55%). We expect that an additional outcome of this work will be an increased awareness of the cumulative depletion of wetlands and loss of ecological services in these urbanized areas, perhaps leading to increased conservation efforts.
Resumo:
Renewable or sustainable energy (SE) sources have attracted the attention of many countries because the power generated is environmentally friendly, and the sources are not subject to the instability of price and availability. This dissertation presents new trends in the DC-AC converters (inverters) used in renewable energy sources, particularly for photovoltaic (PV) energy systems. A review of the existing technologies is performed for both single-phase and three-phase systems, and the pros and cons of the best candidates are investigated. In many modern energy conversion systems, a DC voltage, which is provided from a SE source or energy storage device, must be boosted and converted to an AC voltage with a fixed amplitude and frequency. A novel switching pattern based on the concept of the conventional space-vector pulse-width-modulated (SVPWM) technique is developed for single-stage, boost-inverters using the topology of current source inverters (CSI). The six main switching states, and two zeros, with three switches conducting at any given instant in conventional SVPWM techniques are modified herein into three charging states and six discharging states with only two switches conducting at any given instant. The charging states are necessary in order to boost the DC input voltage. It is demonstrated that the CSI topology in conjunction with the developed switching pattern is capable of providing the required residential AC voltage from a low DC voltage of one PV panel at its rated power for both linear and nonlinear loads. In a micro-grid, the active and reactive power control and consequently voltage regulation is one of the main requirements. Therefore, the capability of the single-stage boost-inverter in controlling the active power and providing the reactive power is investigated. It is demonstrated that the injected active and reactive power can be independently controlled through two modulation indices introduced in the proposed switching algorithm. The system is capable of injecting a desirable level of reactive power, while the maximum power point tracking (MPPT) dictates the desirable active power. The developed switching pattern is experimentally verified through a laboratory scaled three-phase 200W boost-inverter for both grid-connected and stand-alone cases and the results are presented.
Resumo:
Wnt signaling plays a vital role in many developmental processes. Wnt signaling has been implicated in neural crest induction and cell differentiation among other functions. In mice Wnts comprise a family of nineteen glycoproteins that bind to Frizzled (Fzd) receptors and LRP5/6 co-receptors. This activates beta-catenin, which translocates into the nucleus and acts as a transcription factor, resulting in differential gene expression. Specifically, Fzd 3 enhances Wnt 1 signaling. Wnt 1 and Fzd 3 are involved in neural crest induction and in neural crest-derived melanocyte development. We analyzed the expression pattern ofFzd 3 and the LRP 5/6 by in situ hybridization inmouse embryos. Our data suggests a role for these genes in neural crest induction and in melanocyte differentiation in the murine system. Results show Fzd 3 expression in the anterior part of the neural tube and in the hindbrain, while LRP 5 is expressed in the anterior part of the neural tube, in the hindbrain, and in the eye. We conclude that Fzd 3 and LRP 5 are expressed in the neural crest. In addition, Fzd 3 might act as the receptor while LRP 5 might act as the co-receptor for Wntl signaling in the murine system.
Resumo:
To achieve the goal of sustainable development, the building energy system was evaluated from both the first and second law of thermodynamics point of view. The relationship between exergy destruction and sustainable development were discussed at first, followed by the description of the resource abundance model, the life cycle analysis model and the economic investment effectiveness model. By combining the forgoing models, a new sustainable index was proposed. Several green building case studies in U.S. and China were presented. The influences of building function, geographic location, climate pattern, the regional energy structure, and the technology improvement potential of renewable energy in the future were discussed. The building’s envelope, HVAC system, on-site renewable energy system life cycle analysis from energy, exergy, environmental and economic perspective were compared. It was found that climate pattern had a dramatic influence on the life cycle investment effectiveness of the building envelope. The building HVAC system energy performance was much better than its exergy performance. To further increase the exergy efficiency, renewable energy rather than fossil fuel should be used as the primary energy. A building life cycle cost and exergy consumption regression model was set up. The optimal building insulation level could be affected by either cost minimization or exergy consumption minimization approach. The exergy approach would cause better insulation than cost approach. The influence of energy price on the system selection strategy was discussed. Two photovoltaics (PV) systems – stand alone and grid tied system were compared by the life cycle assessment method. The superiority of the latter one was quite obvious. The analysis also showed that during its life span PV technology was less attractive economically because the electricity price in U.S. and China did not fully reflect the environmental burden associated with it. However if future energy price surges and PV system cost reductions were considered, the technology could be very promising for sustainable buildings in the future.
Resumo:
El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.
Resumo:
El Niño and the Southern Oscillation (ENSO) is a cycle that is initiated in the equatorial Pacific Ocean and is recognized on interannual timescales by oscillating patterns in tropical Pacific sea surface temperatures (SST) and atmospheric circulations. Using correlation and regression analysis of datasets that include SST’s and other interdependent variables including precipitation, surface winds, sea level pressure, this research seeks to quantify recent changes in ENSO behavior. Specifically, the amplitude, frequency of occurrence, and spatial characteristics (i.e. events with maximum amplitude in the Central Pacific versus the Eastern Pacific) are investigated. The research is based on the question; “Are the statistics of ENSO changing due to increasing greenhouse gas concentrations?” Our hypothesis is that the present-day changes in amplitude, frequency, and spatial characteristics of ENSO are determined by the natural variability of the ocean-atmosphere climate system, not the observed changes in the radiative forcing due to change in the concentrations of greenhouse gases. Statistical analysis, including correlation and regression analysis, is performed on observational ocean and atmospheric datasets available from the National Oceanographic and Atmospheric Administration (NOAA), National Center for Atmospheric Research (NCAR) and coupled model simulations from the Coupled Model Inter-comparison Project (phase 5, CMIP5). Datasets are analyzed with a particular focus on ENSO over the last thirty years. Understanding the observed changes in the ENSO phenomenon over recent decades has a worldwide significance. ENSO is the largest climate signal on timescales of 2 - 7 years and affects billions of people via atmospheric teleconnections that originate in the tropical Pacific. These teleconnections explain why changes in ENSO can lead to climate variations in areas including North and South America, Asia, and Australia. For the United States, El Niño events are linked to decreased number of hurricanes in the Atlantic basin, reduction in precipitation in the Pacific Northwest, and increased precipitation throughout the southern United Stated during winter months. Understanding variability in the amplitude, frequency, and spatial characteristics of ENSO is crucial for decision makers who must adapt where regional ecology and agriculture are affected by ENSO.
Resumo:
Coral reef maps at various spatial scales and extents are needed for mapping, monitoring, modelling, and management of these environments. High spatial resolution satellite imagery, pixel <10 m, integrated with field survey data and processed with various mapping approaches, can provide these maps. These approaches have been accurately applied to single reefs (10-100 km**2), covering one high spatial resolution scene from which a single thematic layer (e.g. benthic community) is mapped. This article demonstrates how a hierarchical mapping approach can be applied to coral reefs from individual reef to reef-system scales (10-1000 km**2) using object-based image classification of high spatial resolution images guided by ecological and geomorphological principles. The approach is demonstrated for three individual reefs (10-35 km**2) in Australia, Fiji, and Palau; and for three complex reef systems (300-600 km**2) one in the Solomon Islands and two in Fiji. Archived high spatial resolution images were pre-processed and mosaics were created for the reef systems. Georeferenced benthic photo transect surveys were used to acquire cover information. Field and image data were integrated using an object-based image analysis approach that resulted in a hierarchically structured classification. Objects were assigned class labels based on the dominant benthic cover type, or location-relevant ecological and geomorphological principles, or a combination thereof. This generated a hierarchical sequence of reef maps with an increasing complexity in benthic thematic information that included: 'reef', 'reef type', 'geomorphic zone', and 'benthic community'. The overall accuracy of the 'geomorphic zone' classification for each of the six study sites was 76-82% using 6-10 mapping categories. For 'benthic community' classification, the overall accuracy was 52-75% with individual reefs having 14-17 categories and reef systems 20-30 categories. We show that an object-based classification of high spatial resolution imagery, guided by field data and ecological and geomorphological principles, can produce consistent, accurate benthic maps at four hierarchical spatial scales for coral reefs of various sizes and complexities.