937 resultados para Sorghum -- Diseases and pests.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Drugs and metabolites are eliminated from the body by metabolism and excretion. The kidney makes the major contribution to excretion of unchanged drug and also to excretion of metabolites. Net renal excretion is a combination of three processes - glomerular filtration, tubular secretion and tubular reabsorption. Renal function has traditionally been determined by measuring plasma creatinine and estimating creatinine clearance. However, estimated creatinine clearance measures only glomerular filtration with a small contribution from active secretion. There is accumulating evidence of poor correlation between estimated creatinine clearance and renal drug clearance in different clinical settings, challenging the 'intact nephron hypothesis' and suggesting that renal drug handling pathways may not decline in parallel. Furthermore, it is evident that renal drug handling is altered to a clinically significant extent in a number of disease states, necessitating dosage adjustment not just based on filtration. These observations suggest that a re-evaluation of markers of renal function is required. Methods that measure all renal handling pathways would allow informed dosage individualisation using an understanding of renal excretion pathways and patient characteristics. Methodologies have been described to determine individually each of the renal elimination pathways. However, their simultaneous assessment has only recently been investigated. A cocktail of markers to measure simultaneously the individual renal handling pathways have now been developed, and evaluated in healthy volunteers. This review outlines the different renal elimination pathways and the possible markers that can be used for their measurement. Diseases and other physiological conditions causing altered renal drug elimination are presented, and the potential application of a cocktail of markers for the simultaneous measurement of drug handling is evaluated. Further investigation of the effects of disease processes on renal drug handling should include people with HIV infection, transplant recipients (renal and liver) and people with rheumatoid arthritis. Furthermore, changes in renal function in the elderly, the effect of sex on renal function, assessment of living kidney donors prior to transplantation and the investigation of renal drug interactions would also be potential applications. Once renal drug handling pathways are characterised in a patient population, the implications for accurate dosage individualisation can be assessed. The simultaneous measurement of renal function elimination pathways of drugs and metabolites has the potential to assist in understanding how renal function changes with different disease states or physiological conditions. In addition, it will further our understanding of fundamental aspects of the renal elimination of drugs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free drug measurement and pharmacodymanic markers provide the opportunity for a better understanding of drug efficacy and toxicity. High-performance liquid chromatography (HPLC)-mass spectrometry (MS) is a powerful analytical technique that could facilitate the measurement of free drug and these markers. Currently, there are very few published methods for the determination of free drug concentrations by HPLC-MS. The development of atmospheric pressure ionisation sources, together with on-line microdialysis or on-line equilibrium dialysis and column switching techniques have reduced sample run times and increased assay efficiency. The availability of such methods will aid in drug development and the clinical use of certain drugs, including anti-convulsants, anti-arrhythmics, immunosuppressants, local anaesthetics, anti-fungals and protease inhibitors. The history of free drug measurement and an overview of the current HPLC-MS applications for these drugs are discussed. Immunosuppressant drugs are used as an example for the application of HPLC-MS in the measurement of drug pharmacodynamics. Potential biomarkers of immunosuppression that could be measured by HPLC-MS include purine nucleoside/nucleotides, drug-protein complexes and phosphorylated peptides. At the proteomic level, two-dimensional gel electrophoresis combined with matrix-assisted laser desorption/ionisation time-of-flight (TOF) MS is a powerful tool for identifying proteins involved in the response to inflammatory mediators. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The literature contains a number of reports of early work involving telemedicine and chronic disease; however, there are comparatively few studies in asthma. Most of the telemedicine studies in asthma have investigated the use of remote monitoring of patients in the home, e.g. transmitting spirometry data via a telephone modem to a central server. The primary objective of these studies was to improve management. A secondary benefit was that patient adherence to prescribed treatment is also likely to be improved. Early results are encouraging; home monitoring in a randomized controlled trial in Japan significantly reduced the number of emergency room visits by patients with poorly controlled asthma. Other studies have described the cost-benefits of a specialist asthma nurse who can manage patients by telephone contact, as well as deliver asthma education. Many web-based systems are available for the general public or healthcare professionals to improve education in asthma, although their quality is highly variable. The work on telemedicine in asthma clearly shows that the technique holds promise in a number of areas. Unfortunately - as in telemedicine generally - most of the literature in patients with asthma refers to pilot trials and feasibility studies, with short-term outcomes. Large-scale, formal research trials are required to establish the cost effectiveness of telemedicine in asthma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Patient outcomes in transplantation would improve if dosing of immunosuppressive agents was individualized. The aim of this study is to develop a population pharmacokinetic model of tacrolimus in adult liver transplant recipients and test this model in individualizing therapy. Population analysis was performed on data from 68 patients. Estimates were sought for apparent clearance (CL/F) and apparent volume of distribution (V/F) using the nonlinear mixed effects model program (NONMEM). Factors screened for influence on these parameters were weight, age, sex, transplant type, biliary reconstructive procedure, postoperative day, days of therapy, liver function test results, creatinine clearance, hematocrit, corticosteroid dose, and interacting drugs. The predictive performance of the developed model was evaluated through Bayesian forecasting in an independent cohort of 36 patients. No linear correlation existed between tacrolimus dosage and trough concentration (r(2) = 0.005). Mean individual Bayesian estimates for CL/F and V/F were 26.5 8.2 (SD) L/hr and 399 +/- 185 L, respectively. CL/F was greater in patients with normal liver function. V/F increased with patient weight. CL/F decreased with increasing hematocrit. Based on the derived model, a 70-kg patient with an aspartate aminotransferase (AST) level less than 70 U/L would require a tacrolimus dose of 4.7 mg twice daily to achieve a steady-state trough concentration of 10 ng/mL. A 50-kg patient with an AST level greater than 70 U/L would require a dose of 2.6 mg. Marked interindividual variability (43% to 93%) and residual random error (3.3 ng/mL) were observed. Predictions made using the final model were reasonably nonbiased (0.56 ng/mL), but imprecise (4.8 ng/mL). Pharmacokinetic information obtained will assist in tacrolimus dosing; however, further investigation into reasons for the pharmacokinetic variability of tacrolimus is required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The close association of excessive alcohol consumption and clinical expression of hemochromatosis has been of widespread interest for many years. In most populations of northern European extraction, more than 90% of patients with overt hemochromatosis are homozygous for the C282Y mutation in the HFE gene. Nevertheless, the strong association of heavy alcohol intake with the clinical expression of hemochromatosis remains. We (individually or in association with colleagues from our laboratories) have performed three relevant studies in which this association was explored. In the first, performed in 1975 before the cloning of the HFE gene, the frequency of clinical symptoms and signs was compared in patients with classical hemochromatosis who consumed 100 g or more of alcohol per day versus in nondrinkers or moderate drinkers who consumed less than 100 g of alcohol per day. The results showed no difference between the two groups except for features of complications of alcoholism in the first group, especially jaundice, peripheral neuritis, and hepatic failure. Twenty-five percent of those with heavy alcohol consumption showed histologic features of alcoholic liver disease (including cirrhosis) together with heavy iron overload. It was concluded that these patients had the genetic disease complicated by alcoholic liver disease. In the second study (2002), 206 subjects with classical HFE-associated hemochromatosis in whom liver biopsy had been performed were evaluated to quantify the contribution of excess alcohol consumption to the development of cirrhosis in hemochromatosis. Cirrhosis was approximately nine times more likely to develop in subjects with hemochromatosis who consumed more than 60 g of alcohol per day than in those who drank less than this amount. In the third study (2002), 371 C282Y-homozygous relatives of patients with HFE-associated hemochromatosis were assessed. Eleven subjects had cirrhosis on liver biopsy and four of these drank 60 g or more of alcohol per day. The reason why heavy alcohol consumption accentuates the clinical expression of hemochromatosis is unclear. Increased dietary iron or increased iron absorption is unlikely. The most likely explanation would seem to be the added co-factor effect of iron and alcohol, both of which cause oxidative stress, hepatic stellate cell activation, and hepatic fibrogenesis. In addition, the cumulative effects of other forms of liver injury may result when iron and alcohol are present concurrently. Clearly, the addition of dietary iron in subjects homozygous for hemochromatosis would be unwise. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated whether allied health assessments carried out via videoconferencing were comparable to assessments carried out face to face. Five allied health therapists (in dietetics, occupational therapy, physiotherapy, podiatry and speech pathology) conducted an assessment of 12 high-dependency residents both face to face and by videoconferencing. On a five-point Likert scale, the therapists' mean ratings for the efficiency and suitability of videoconferencing for assessment were significantly lower than for face to face. Their mean rating for the adequacy of their care plans was also significantly lower for videoconferencing than for face to face. However, in each case the dietician's assessments did not differ significantly between the two modalities. In 35 cases out of 60, two independent raters agreed that the therapists' care plans after the videoconferencing and face-to-face assessments were the same. However, the level of agreement between raters was only moderate (kappa=0.31). Despite the therapists' (natural) preference for face-to-face working, care plans formulated via videoconferencing were reasonably similar to those formulated in face-to-face assessment. Allied health assessments carried out by videoconferencing would therefore seem to be feasible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

inorganic sulfate is required for numerous functions in mammalian physiology, and its circulating levels are proposed to be maintained by the Na+-SO42- cotransporter, (NaSi-1). To determine the role of NaSi-1 in sulfate homeostasis and the physiological consequences in its absence, we have generated a mouse lacking a functional NaSi-1 gene, Nas1. Serum sulfate concentration was reduced by >75% in Nas1(-/-) mice when compared with Nas1(+/+) mice. Nas1(-/-) mice exhibit increased urinary sulfate excretion, reduced renal and intestinal Na+-SO42- cotransport, and a general growth retardation. Nas1(-/-) mouse body weight was reduced by >20% when compared with Nas1(+/+) and Nas1(+/-) littermates at 2 weeks of age and remained so throughout adulthood. Nas1(-/-) females had a lowered fertility, with a 60% reduction in litter size. Spontaneous clonic seizures were observed in Nas1(-/-) mice from 8 months of age. These data demonstrate NaSi-1 is essential for maintaining sulfate homeostasis, and its expression is necessary for a wide range of physiological functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Both stimulation of purinergic receptors by ATP and activation of the cystic fibrosis transmembrane conductance regulator (CFTR) inhibit amiloride-sensitive Na+ transport and activate Cl-secretion. These changes in ion transport may well affect cell volume. We therefore examined whether cell shrinkage or cell swelling do affect amiloride-sensitive Na+ transport in epithelial tissues or Xenopus oocytes and whether osmotic stress interferes with regulation of Na+ transport by ATP or CFTR. Stimulation of purinergic receptors by ATP/UTP or activation of CFTR by IBMX and forskolin inhibited amiloride-sensitive transport in mouse trachea and colon, respectively, by a mechanism that was Cl- dependent. When exposed to a hypertonic but not hypotonic bath solution, amiloride-sensitive Na+ transport was inhibited in mouse trachea and colon, independent of the extracellular Cl- concentration. Both inhibition of Na+ transport by hypertonic bath solution and ATP were additive. When coexpressed in Xenopus oocytes, activation of CFTR by IBMX and forskolin inhibited the epithelial Na+ channel (ENaC) in a Cl(-)dependent fashion. However, both hypertonic and hypotonic bath solutions showed only minor effects on amiloride-sensitive conductance, independent of the bath Cl- concentration. Moreover, CFTR-induced inhibition of ENaC could be detected in chocytes even after exposure to hypertonic or bypotonic bath solutions. We conclude that amiloride-sensitive Na+ absorption in mouse airways and colon is inhibited by cell shrinkage by a mechanism that does not interfere with purinergic and CFTR-mediated inhibition of ENaC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate plays an essential role during growth, development, bone/cartilage formation, and cellular metabolism. In this study, we have isolated the human sulfate anion transporter cDNA (hsat-1; SCL26A1) and gene (SAT1), determined its protein function in Xenopus oocytes and characterized SAT1 promoter activity in mammalian renal cell lines. hsat-1 encodes a protein of 75 kDa, with 12 putative transmembrane domains, that induces sulfate, chloride, and oxalate transport in Xenopus oocytes. hsat-1 mRNA is expressed most abundantly in the kidney and liver, with lower levels in the pancreas, testis, brain, small intestine, colon, and lung. The SAT1 gene is comprised of four exons stretching 6 kb in length, with an alternative splice site formed from an optional exon. SAT1 5' flanking region led to promoter activity in renal OK and LLC-PK1 cells. Using SAT1 5' flanking region truncations, the first 135 bp was shown to be sufficient for basal promoter activity. Mutation of the activator protein-1 (AP-1) site at position 252 in the SAT1 promoter led to loss of transcriptional activity, suggesting its requirement for SAT1 basal expression. This study represents the first functional characterization of the human SAT1 gene and protein encoded by the anion transporter hsat-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sulfate (SO42-) is required for bone/cartilage formation and cellular metabolism. sat-1 is a SO42- anion transporter expressed on basolateral membranes of renal proximal tubules, and is suggested to play an important role in maintaining SO42- homeostasis. As a first step towards studying its tissue-specific expression, hormonal regulation, and in preparation for the generation of knockout mice, we have cloned and characterized the mouse sat-1 cDNA (msat-1), gene (sat1; Slc26a1) and promoter region. msat-1 encodes a 704 amino acid protein (75.4 kDa) with 12 putative transmembrane domains that induce SO42- (also oxalate and chloride) transport in Xenopus oocytes. msat-1 mRNA was expressed in kidney, liver, cecum, calvaria, brain, heart, and skeletal muscle. Two distinct transcripts were expressed in kidney and liver due to alternative utilization of the first intron, corresponding to an internal portion of the 5'-untranslated region. The Sa1 gene (similar to6 kb) consists of 4 exons. Its promoter is similar to52% G+C rich and contains a number of well-characterized cis-acting elements, including sequences resembling hormone responsive elements T3REs and VDREs. We demonstrate that Sat1 promoter driven basal transcription in OK cells was stimulated by tri-iodothyronine. Site-directed mutagenesis identified an imperfect T3RE at -454-bp in the Sat1 promoter to be responsible for this activity. This study represents the first characterization of the structure and regulation of the Sat1 gene encoding a SO42-/chloride/oxalate anion transporter.