963 resultados para Sonic irrigation
Resumo:
The use of saline water and the reuse of drainage water for irrigation depend on long-term strategies that ensure the sustainability of socio-economic and environmental impacts of agricultural systems. In this study, it was evaluated the effects of irrigation with saline water in the dry season and fresh water in the rainy season on the soil salt accumulation yield of maize and cowpea, in a crop rotation system. The experiment was conducted in the field, using a randomized complete block design, with five replications. The first crop was installed during the dry season of 2007, with maize irrigated with water of different salinities (0.8, 2.2, 3.6 and 5.0 dS m-1). The maize plants were harvested at 90 days after sowing (DAS), and vegetative growth, dry mass of 1000 seeds and grain yield were evaluated. The same plots were utilized for the cultivation of cowpea, during the rainy season of 2008. At the end of the crop, cycle plants of this species were harvested, being evaluated the vegetative growth and plant yield. Soil samples were collected before and after maize and cowpea cultivation. The salinity of irrigation water above 2.2 dS m-1 reduced the yield of maize during the dry season. The high total rainfall during the rainy season resulted in leaching of salts accumulated during cultivation in the dry season, and eliminated the possible negative effects of salinity on cowpea plants. However, this crop showed atypical behavior with a significant proportion of vegetative mass and low pod production, which reduced the efficiency of this strategy of crop rotation under the conditions of this study.
Resumo:
The experiment was performed in the experimental area of the Engineering Department Federal University of Lavras, Minas Gerais State, Brazil. It aimed at identifying the adequate irrigation management of the greenhouse-cultivated Japanese cucumber (Cucumis sativus L.). complete randomized design, with four levels of soil water potential (15; 30; 60 e 120 kPa) at two phenological phases (vegetative and reproductive), and 5 replications. Overall, the results showed decrease of yield according to increase of soil water potentials. During the reproductive stage, Japanese cucumber plants were more sensitive to water deficit, resulting in further decrease in yield compared to applied water deficit during the vegetative stage of the culture.
Resumo:
With the objective to stimulate the use of irrigation and the electric energy fee reduction during night time program granted by the 2004 Federal law, the Government of the state of Paraná, Brazil launched the Night Irrigation Program - NPI. Beyond this discount, the farmer that adheres to NPI will get additional benefits, as completion of the electric grid without cost, subsidized financing of equipment, technical assistance, support with environmental farm compliance, and the possibility of replacing the entire pump energy matrix. As part of the NPI strategy of action, installation of learning centers for irrigation technology was planned in agricultural schools, thus contributing both to improve technical professional training in agriculture, and for the dissemination of knowledge in irrigated agriculture, in order to increase agricultural productivity.
Resumo:
Quantifying soil evaporation is required on studies of soil water balance and applications aiming to improve water use efficiency by crops. The performance of a microlysimeter (ML) to measure soil evaporation under irrigation and non-irrigation was evaluated. The MLs were constructed using PVC tubes, with dimensions of 100 mm inner diameter, 150 mm depth and 2.5 mm wall thickness. Four MLs were uniformly distributed on the soil surface of two weighing lysimeters conducted under bare soil, previously installed at Iapar, in Londrina, PR, Brazil. The lysimeters had 1.4 m width, 1.9 m length and 1.3 m depth and were conducted with and without irrigation. Evaporation measurements by MLs (E ML) were compared with measurements by lysimeters (E L) during four different periods in the year. Differences between E ML and E L were small either for low or high atmospheric demand and also for either irrigated or non-irrigated conditions, which indicates that the ML tested here is suitable for measurement of soil evaporation.
Resumo:
The use of productivity information and efficiency of water use is important for the economic analysis of production and irrigation management, and also helps the economy of water use, which is essential to plant life. The objective of this study was to evaluate the biomass allocation, the water use efficiency and water content in fruits of sweet pepper cropped under the influence of irrigation blades and potassium doses. The statistic design was a completely randomized factorial scheme (5 x 2) and four replications, with five irrigation blades (80; 90; 100; 110 and 120% of crop evapotranspiration) and two levels of potassium (80 and 120 kg K2O ha-1 ), applied according to phenological phase, through a system of drip irrigation with self-compensated drippers, installed in a battery of 40 drainage lysimeters cultivated with sweet pepper (Maximos F1), at Federal Rural University of Pernambuco (UFRPE), Recife, state of Pernambuco, Brazil. The dry biomass production of sweet pepper was influenced by fertigation regimes; when it was set the lowest dose, estimates of the efficiency of water use and moisture in the fruit occurred with the use of irrigation depth of 97 and 95% of ETc, respectively.
Resumo:
In this study, it was discussed the efficiency criteria in each of the elements that compose a central pivot, and this analysis was applied to two sets of systems located in regions of Cruz Alta and Santo Augusto, state of Rio Grande do Sul, Brazil. The methodology used combines water and energy assessment through an indicator called Normalized Specific Consumption in Irrigation (C ENI), allowing thus a comparison between equipment and projects. The C ENI in Cruz Alta region showed 72% of the equipment above the standard (8.68 kWh mm-1 ha-1 100m-1), and in Santo Augusto region 64.28% with consumption above the standard. The mean irrigation efficiency for Cruz Alta region was 29.85%, with standard deviation of 5.41%, and for Santo Augusto region, it was 29.02%, with standard deviation of 5.15%.
Resumo:
This study aimed to evaluate the spatial variability of leaf content of macro and micronutrients. The citrus plants orchard with 5 years of age, planted at regular intervals of 8 x 7 m, was managed under drip irrigation. Leaf samples were collected from each plant to be analyzed in the laboratory. Data were analyzed using the software R, version 2.5.1 Copyright (C) 2007, along with geostatistics package GeoR. All contents of macro and micronutrients studied were adjusted to normal distribution and showed spatial dependence.The best-fit models, based on the likelihood, for the macro and micronutrients were the spherical and matern. It is suggest for the macronutrients nitrogen, phosphorus, potassium, calcium, magnesium and sulfur the minimum distances between samples of 37; 58; 29; 63; 46 and 15 m respectively, while for the micronutrients boron, copper, iron, manganese and zinc, the distances suggests are 29; 9; 113; 35 and 14 m, respectively.
Resumo:
The knowledge of the evapotranspiration (ETc) and crop coefficient (Kc) is fundamental to plan and to manage the irrigation of any crop. The aim of this study was to determine the daily and hourly evapotranspiration of drip irrigated watermelon (Citrullus Lanatus, var. Crimson Sweet) and crop coefficient (Kc) in each crop development phase. The experiment was carried out in an experimental area of 1.27 ha of Embrapa Mid-North, localized in Parnaíba (02°54'S, 41°47'W and 46 m above of sea), State of Piauí, Brazil, from September to November, 2006. Electronic weighing lysimeters of 1.5 m x 1.5 m wide and long and 1.0 m deep were used to obtain the evapotranspiration. The plants were drip irrigated with a lateral row per plant row and drippers spaced 0.5 m from each other. The reference evapotranspiration (ETo) was estimated using the Penman-Monteith equation from the climatic data obtained by electronic sensors. The total evapotranspiration during the watermelon crop cycle cultivated in the state of Piauí was 233.87 mm, with mean values of 3.7 mm day-1, minimum of 1.18 and maximum of 8.14 mm day-1. The Kc of the drip irrigated watermelon was 0.18 in the initial stage of crop growth; 0.18 to 1.3, in crop development stage; 1.3 in the intermediate stage and 0.43 in the final stage.
Resumo:
The objective of this study was to evaluate the effects of the application of different water depths and nitrogen and potassium doses in the quality of Tanzania grass, in the southern of the state of Tocantins. The experiment was conducted on strips of traditional sprinklers, and used, as treatments, a mixture of fertilizer combinations of N and K2O always in the ratio of 1 N:0.8 K2O. This study determined throughout the experiment: plant height (PH), the crude protein (CP) and neutral detergent fiber (NDF). The highest plant height obtained was 132.4 cm, with a fertilizer dose of 691.71 kg ha-1 in the proportion of N:0.8 K2O, in other words, 384.28 kg ha-1 of N and 307.43 kg ha-1 of K2O, and water depth of 80% of the ETc. The highest crude protein content was 12.2%, with the fertilizer dose application of 700 kg ha-1 yr-1 in the proportion of 1 N to 0.8 of K2O, in other words, 388.89 kg ha-1 of N and 311.11 kg ha-1 of K2O and absence of irrigation. The lowest level of neutral detergent fiber was 60.7% with the application of the smallest dose of fertilizer and highest water depth. It was concluded in this study that there was an increase in plant height by increasing the fertilizer dose and water depth. The crude protein content increased 5.4% in the dry season, by increasing the fertilizer dose and water depth. In the dry season, there was an increase of NDF content by 4.5% by increasing the application of fertilizer and water depth.
Resumo:
Under organic management in Seropédica-RJ, Brazil, using a weighing lysimeter, the crop coefficients (kc), the maximum evapotranspiration and the productivity of eggplant cultivation under two cropping systems (no tillage with straw plus soil with conventional preparation) were determined. A whole randomized layout with two treatments (no tillage and conventional) and five replicates during 134 days of cultivation were adopted. There were no significant differences in the eggplant cultivation in the two cropping systems, with a maximum commercial productivity obtained from 47.42 Mg ha-1 for the no-tillage system, and 47.91 Mg ha-1 for the conventional tillage. The accumulated ETc was 285.15 and 323.44 mm for the no-tillage and conventional, respectively. The crop coefficients value for the phases: 1 - transplanting, flowering, 2 - flowering-fruiting, 3 - fruit- first harvesting, 4- first harvesting of the final crop cycle was 0.83, 0.77, 0.90 and 0.97 in no-tillage system for the respective phases and for the conventional one 0.81, 1.14, 1.17 and 1.05 for the same steps described above.
Resumo:
Evapotranspiration is the process of water loss of vegetated soil due to evaporation and transpiration, and it may be estimated by various empirical methods. This study had the objective to carry out the evaluation of the performance of the following methods: Blaney-Criddle, Jensen-Haise, Linacre, Solar Radiation, Hargreaves-Samani, Makkink, Thornthwaite, Camargo, Priestley-Taylor and Original Penman in the estimation of the potential evapotranspiration when compared to the Penman-Monteith standard method (FAO56) to the climatic conditions of Uberaba, state of Minas Gerais, Brazil. A set of 21 years monthly data (1990 to 2010) was used, working with the climatic elements: temperature, relative humidity, wind speed and insolation. The empirical methods to estimate reference evapotranspiration were compared with the standard method using linear regression, simple statistical analysis, Willmott agreement index (d) and performance index (c). The methods Makkink and Camargo showed the best performance, with "c" values of 0.75 and 0.66, respectively. The Hargreaves-Samani method presented a better linear relation with the standard method, with a correlation coefficient (r) of 0.88.
Resumo:
The transposition of the São Francisco River is considered one of the greatest engineering works in Brazil of all time since it will cross an extensive agricultural region of continental dimensions, involving environmental impacts, water, soil, irrigation, water payment and other multidisciplinary themes. Taking into account its importance, this subject was incorporated into a discipline of UFSCar (Federal University of São Carlos - Brazil) named "Pollution and Environmental Impacts". It was noted strong reaction against the project, even before the presentation. To allow a critical analysis, the first objective was to compile the main technical data and environmental impacts. The second objective was to detect the three most important aspects that cause reaction, concluding for the following reasons: assumption that the volume of water to be transferred was much greater than it actually is proposed in the project; lack of knowledge about similar project already done in Brazil; the idea that the artificial canal to be built was much broader than that proposed by the project. The participants' opinion about "volume to be transferred" was raised quantitatively four times: 2-undergraduate students; 1-graduate; 1-outside community. The average resulted 14 times larger than that proposed in the project, significant according to t-test. It was concluded that the reaction to water transfer project is due in part to the ignorance combined with a preconceived idea that tend to overestimate the magnitude of environmental impacts.
Resumo:
The experiment was conducted in an orchard located in University of Florida (Citrus Research and Education Center), Lake Alfred, Polk County, Florida, USA. The objective of this study was to evaluate the effects of water stress in root distribution of 'Valencia' orange tree on 'Swingle' citrumelo rootstock. Three treatments were imposed on the trees: 1) normal irrigation with microsprinklers, 2) no irrigation in winter (November through mid-March) and 3) rainfall exclusion by placing a water repelling fabric (Tyvek) under the trees. Trees in treatments 1 and 2 received normal rainfall during the winter, but treatment 3 received no rain. Normal irrigation was resumed on all treatments in mid March. Soil was collected using root auger head (0.09 m diameter and height 0.25 m) in two opposing quadrants (West and East at 3 horizontal distances from tree trunk (1, 2 and 3 m) and 4 depths (0.0-0.15; 0.15-0.30; 0.30-0.60 and 0.60-0.90 m). The results from root sampling showed that there was a significant difference in root distribution between irrigated treatment and non irrigated/non rainfall.
Resumo:
The purpose of this research was to evaluate the effect of drip irrigation under different population arrangements on the phytometric features, coffee productivity and bean size classification according to sieve retention. The experiment with Coffea arabica L. cv Catuaí was carried out in Mococa, São Paulo, Brazil. The experimental design was a 6 x 2 factorial scheme in randomized blocks, with four replications. The six densities of plantation were E1 (1.60 x 0.50 m); E2 (1.60 x 0.75 m); E3 (1.60 x 1.00 m); E4 (3.20 x 0.50 m); E5 (3.20 x 0.75 m) and E6 (3.20 x 1.00 m), which were divided according to the availability of water (irrigated - I - or non-irrigated - NI - groups). Data were submitted to analysis of variance and averages compared by Tukey test at 1 and 5% of probability. Descriptive analysis of coffee beans according to sieve classification was performed. Irrigation promoted an increase in plant height, crown diameter and production of processed coffee when compared with the NI group. Interaction between population arrangement and irrigation was observed, with an increase in production and crown diameter as the spacing was decreased. Therefore, irrigation provided significant increase in coffee bean size.
Resumo:
The aim of this study was to quantify the water consumption and the crop coefficients (Kc) for the potato (Solanum tuberosum L.), in Seropédica, Rio de Janeiro (RJ), Brazil, under organic management, and to simulate the crop evapotranspiration (ETc) using the Kc obtained in the field and the ones recommended by the Food and Agriculture Organization (FAO). The water consumption was obtained through soil water balance, using TDR probes installed at 0.15m and 0.30m deep. At the different stages of development, the Kc was determined by the ratio of ETc and reference evapotranspiration, obtained by Penman-Monteith FAO 56. The crop coefficients obtained were 0.35, 0.45, 1.29 and 0.63. The accumulated ETc obtained in the field was 109.6 mm, while the ETc accumulated from FAO's Kc were 142.2 and 138mm, respectively, considering the classical values and the values adjusted to the local climatic conditions. The simulation of water consumption based on meteorological data of historical series from 1961 to 2007 provided higher value of ETc when compared with the one obtained in the field. From the meteorological data of historical series, it was observed that the use of Kc recommended by FAO may overestimate the amount of irrigation water by 9%, over the same growing season.