789 resultados para Social Sciences> Social Work
Resumo:
Footwear is designed to reduce injury, and enhance performance. However, the effect footwear has on foot and ankle kinematics currently remains unknown. Acknowledging the need for improved understanding, multi-segment models of the foot-shoe complex need to be established to both describe and quantify the effect footwear has on the foot and ankle during stance phase of gait. The purpose of this study was to quantify how footwear alters the kinematics of the foot inside the shoe during stance phase of walking gait.
Resumo:
Finite element analyses of the human body in seated postures requires digital models capable of providing accurate and precise prediction of the tissue-level response of the body in the seated posture. To achieve such models, the human anatomy must be represented with high fidelity. This information can readily be defined using medical imaging techniques such as Magnetic Resonance Imaging (MRI) or Computed Tomography (CT). Current practices for constructing digital human models, based on the magnetic resonance (MR) images, in a lying down (supine) posture have reduced the error in the geometric representation of human anatomy relative to reconstructions based on data from cadaveric studies. Nonetheless, the significant differences between seated and supine postures in segment orientation, soft-tissue deformation and soft tissue strain create a need for data obtained in postures more similar to the application posture. In this study, we present a novel method for creating digital human models based on seated MR data. An adult-male volunteer was scanned in a simulated driving posture using a FONAR 0.6T upright MRI scanner with a T1 scanning protocol. To compensate for unavoidable image distortion near the edges of the study, images of the same anatomical structures were obtained in transverse and sagittal planes. Combinations of transverse and sagittal images were used to reconstruct the major anatomical features from the buttocks through the knees, including bone, muscle and fat tissue perimeters, using Solidworks® software. For each MR image, B-splines were created as contours for the anatomical structures of interest, and LOFT commands were used to interpolate between the generated Bsplines. The reconstruction of the pelvis, from MR data, was enhanced by the use of a template model generated in previous work CT images. A non-rigid registration algorithm was used to fit the pelvis template into the MR data. Additionally, MR image processing was conducted to both the left and the right sides of the model due to the intended asymmetric posture of the volunteer during the MR measurements. The presented subject-specific, three-dimensional model of the buttocks and thighs will add value to optimisation cycles in automotive seat development when used in simulating human interaction with automotive seats.
Resumo:
In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.
Resumo:
Finite Element Modeling (FEM) has become a vital tool in the automotive design and development processes. FEM of the human body is a technique capable of estimating parameters that are difficult to measure in experimental studies with the human body segments being modeled as complex and dynamic entities. Several studies have been dedicated to attain close-to-real FEMs of the human body (Pankoke and Siefert 2007; Amann, Huschenbeth et al. 2009; ESI 2010). The aim of this paper is to identify and appraise the state of-the art models of the human body which incorporate detailed pelvis and/or lower extremity models. Six databases and search engines were used to obtain literature, and the search was limited to studies published in English since 2000. The initial search results identified 636 pelvis-related papers, 834 buttocks-related papers, 505 thigh-related papers, 927 femur-related papers, 2039 knee-related papers, 655 shank-related papers, 292 tibia-related papers, 110 fibula-related papers, 644 ankle related papers, and 5660 foot-related papers. A refined search returned 100 pelvis-related papers, 45 buttocks related papers, 65 thigh-related papers, 162 femur-related papers, 195 kneerelated papers, 37 shank-related papers, 80 tibia-related papers, 30 fibula-related papers and 102 ankle-related papers and 246 foot-related papers. The refined literature list was further restricted by appraisal against a modified LOW appraisal criteria. Studies with unclear methodologies, with a focus on populations with pathology or with sport related dynamic motion modeling were excluded. The final literature list included fifteen models and each was assessed against the percentile the model represents, the gender the model was based on, the human body segment/segments included in the model, the sample size used to develop the model, the source of geometric/anthropometric values used to develop the model, the posture the model represents and the finite element solver used for the model. The results of this literature review provide indication of bias in the available models towards 50th percentile male modeling with a notable concentration on the pelvis, femur and buttocks segments.
Resumo:
In this work a biomechanical model is used for simulation of muscle forces necessary to maintain the posture in a car seat under different support conditions.