921 resultados para Small-angle Neutron


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: Dynamic contact angle (DCA) methods have advantages over other contact angle methodologies, not least that they can provide more than single contact angle values. Here we illustrate the use of DCA analysis to provide “fingerprint” characterisation of contact lens surfaces, and the way that different materials change in the early stages of wear. Method: The DCA method involves attaching to a microbalance weighted strips cut from a lens. The strips are then cyclically inserted into and removed from an aqueous solution. Conventionally, readings of force taken from linear portions of the resultant dipping curves are translated into advancing (CAa) and receding contact (CAr) angles. Additionally, analysis of the force versus immersion profile provides a “fingerprint” characterisation of the state of the lens surface. Results: CAa and CAr values from DCA traces provide a useful means of differentiating gross differences in hydrophilicity and molecular mobility of surfaces under particular immersion and emersion conditions, such as dipping rate and dwell times. Typical values for etafilcon A (CAa:63.1; CAr:37) and balafilcon B (CAa:118.4; CAr:36.4) illustrate this. Surface modifications induced in lens manufacture are observed to produce not only changes in these value, which may be small, but also changes in the DCA “fingerprint” (slope, undulations, length of plateau). Interestingly, similar changes are induced in the first few hours of lens wear with some lens-patient combinations. Conclusions: Although single parameter contact angles are useful for material characterisation, information of potential clinical interest can be obtained from more detailed analysis of DCA traces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The atomic-scale structure of Bioglass and the effect of substituting lithium for sodium within these glasses have been investigated using neutron diffraction and solid state magic angle spinning (MAS) NMR. Applying an effective isomorphic substitution difference function to the neutron diffraction data has enabled the Na-O and Li-O nearest-neighbour correlations to be isolated from the overlapping Ca-O, O-(P)-O and O-(Si)-O correlations. These results reveal that Na and Li behave in a similar manner within the glassy matrix and do not disrupt the short range order of the network former. Residual differences are attributed solely to the variation in ionic radius between the two species. Successful simplification of the 2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Strontium has been substituted for calcium in the glass series (SiO2)49.46(Na2O)26.38(P2O5)1.07(CaO)23.08x(SrO)x (where x = 0, 11.54, 23.08) to elucidate their underlying atomic-scale structural characteristics as a basis for understanding features related to the bioactivity. These bioactive glasses have been investigated using isomorphic neutron and X-ray diffraction, Sr K-edge EXAFS and solid state 17O, 23Na, 29Si, 31P and 43Ca magic-angle-spinning (MAS) NMR. An effective isomorphic substitution first-order difference function has been applied to the neutron diffraction data, confirming that Ca and Sr behave in a similar manner within the glass network, with residual differences attributed to solely the variation in ionic radius between the two species. The diffraction data provides the first direct experimental evidence of split Ca–O nearest-neighbour correlations in these melt quench bioactive glasses, together with an analogous splitting of the Sr–O correlations; the correlations are attributed to the metal ions correlated either to bridging or to non-bridging oxygen atoms. Triple quantum (3Q) 43Ca MAS NMR corroborates the split Ca–O correlations. Successful simplification of the 2 < r (A) < 3 region via the difference method has also revealed two distinct Na environments. These environments are attributed to sodium correlated either to bridging or to nonbridging oxygen atoms. Complementary multinuclear MAS NMR, Sr K-edge EXAFS and X-ray diffraction data supports the structural model presented. The structural sites present will be intimately related to their release properties in physiological fluids such as plasma and saliva, and hence the bioactivity of the material. Detailed structural knowledge is therefore a prerequisite for optimising material design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives and Methods: Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. Results: The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. Conclusions: No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable. © 2013 Contact Lens Association of Ophthalmologists.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Controlling polymer thin-film morphology and crystallinity is crucial for a wide range of applications, particularly in thin-film organic electronic devices. In this work, the crystallization behavior of a model polymer, poly(ethylene oxide) (PEO), during spin-coating is studied. PEO films were spun-cast from solvents possessing different polarities (chloroform, THF, and methanol) and probed via in situ grazing incidence wide-angle X-ray scattering. The crystallization behavior was found to follow the solvent polarity order (where chloroform < THF < methanol) rather than the solubility order (where THF > chloroform > methanol). When spun-cast from nonpolar chloroform, crystallization largely followed Avrami kinetics, resulting in the formation of morphologies comprising large spherulites. PEO solutions cast from more polar solvents (THF and methanol) do not form well-defined highly crystalline morphologies and are largely amorphous with the presence of small crystalline regions. The difference in morphological development of PEO spun-cast from polar solvents is attributed to clustering phenomena that inhibit polymer crystallization. This work highlights the importance of considering individual components of polymer solubility, rather than simple total solubility, when designing processing routes for the generation of morphologies with optimum crystallinities or morphologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high resolution study of the quasielastic 2 H(e, e'p)n reaction was performed in Hall A at the Thomas Jefferson Accelerator Facility in Newport News, Virginia. The measurements were performed at a central momentum transfer of : q: ∼ 2400 MeV/c, and at a central energy transfer of ω ∼ 1500 MeV, a four momentum transfer Q2 = 3.5 (GeV/c)2, covering missing momenta from 0 to 0.5 GeV/c. The majority of the measurements were performed at Φ = 180° and a small set of measurements were done at Φ = 0°. The Hall A High Resolution Spectrometers (HRS) were used to detect coincident electrons and protons, respectively. Absolute 2H(e, e'p) n cross sections were obtained as a function of the recoiling neutron scattering angle with respect to [special characters omitted]. The experimental results were compared to a Plane Wave Impulse Approximation (PWIA) model and to a calculation that includes Final State Interaction (FSI) effects. Experimental 2H(e, e'p)n cross sections were determined with an estimated systematic uncertainty of 7%. The general features of the measured cross sections are reproduced by Glauber based calculations that take the motion of the bound nucleons into account (GEA). Final State Interactions (FSI) contributions were found to depend strongly on the angle of the recoiling neutron with respect to the momentum transfer and on the missing momentum. We found a systematic deviation of the theoretical prediction of about 30%. At small &thetas; nq (&thetas;nq < 60°) the theory overpredicts the cross section while at large &thetas; nq (&thetas;nq > 80°) the theory underestimates the cross sections. We observed an enhancement of the cross section, due to FSI, of about 240%, as compared to PWIA, for a missing momentum of 0.4 GeV/c at an angle of 75°. For missing momentum of 0.5 GeV/c the enhancement of the cross section due to the same FSI effects, was about 270%. This is in agreement with GEA. Standard Glauber calculations predict this large contribution to occur at an angle of 90°. Our results show that GEA better describes the 2H(e, e'p)n reaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents a study of the D( e, e′p)n reaction carried out at the Thomas Jefferson National Accelerator Facility (Jefferson Lab) for a set of fixed values of four-momentum transfer Q 2 = 2.1 and 0.8 (GeV/c)2 and for missing momenta pm ranging from pm = 0.03 to pm = 0.65 GeV/c. The analysis resulted in the determination of absolute D(e,e′ p)n cross sections as a function of the recoiling neutron momentum and it's scattering angle with respect to the momentum transfer [vector] q. The angular distribution was compared to various modern theoretical predictions that also included final state interactions. The data confirmed the theoretical prediction of a strong anisotropy of final state interaction contributions at Q2 of 2.1 (GeV/c)2 while at the lower Q2 value, the anisotropy was much less pronounced. At Q2 of 0.8 (GeV/c)2, theories show a large disagreement with the experimental results. The experimental momentum distribution of the bound proton inside the deuteron has been determined for the first time at a set of fixed neutron recoil angles. The momentum distribution is directly related to the ground state wave function of the deuteron in momentum space. The high momentum part of this wave function plays a crucial role in understanding the short-range part of the nucleon-nucleon force. At Q2 = 2.1 (GeV/c)2, the momentum distribution determined at small neutron recoil angles is much less affected by FSI compared to a recoil angle of 75°. In contrast, at Q2 = 0.8 (GeV/c)2 there seems to be no region with reduced FSI for larger missing momenta. Besides the statistical errors, systematic errors of about 5–6 % were included in the final results in order to account for normalization uncertainties and uncertainties in the determi- nation of kinematic veriables. The measurements were carried out using an electron beam energy of 2.8 and 4.7 GeV with beam currents between 10 to 100 &mgr; A. The scattered electrons and the ejected protons originated from a 15cm long liquid deuterium target, and were detected in conicidence with the two high resolution spectrometers of Hall A at Jefferson Lab.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: To investigate the effect of incorporating a beam spreading parameter in a beam angle optimization algorithm and to evaluate its efficacy for creating coplanar IMRT lung plans in conjunction with machine learning generated dose objectives.

Methods: Fifteen anonymized patient cases were each re-planned with ten values over the range of the beam spreading parameter, k, and analyzed with a Wilcoxon signed-rank test to determine whether any particular value resulted in significant improvement over the initially treated plan created by a trained dosimetrist. Dose constraints were generated by a machine learning algorithm and kept constant for each case across all k values. Parameters investigated for potential improvement included mean lung dose, V20 lung, V40 heart, 80% conformity index, and 90% conformity index.

Results: With a confidence level of 5%, treatment plans created with this method resulted in significantly better conformity indices. Dose coverage to the PTV was improved by an average of 12% over the initial plans. At the same time, these treatment plans showed no significant difference in mean lung dose, V20 lung, or V40 heart when compared to the initial plans; however, it should be noted that these results could be influenced by the small sample size of patient cases.

Conclusions: The beam angle optimization algorithm, with the inclusion of the beam spreading parameter k, increases the dose conformity of the automatically generated treatment plans over that of the initial plans without adversely affecting the dose to organs at risk. This parameter can be varied according to physician preference in order to control the tradeoff between dose conformity and OAR sparing without compromising the integrity of the plan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Le glaucome est un groupe hétérogène de maladies qui sont caractérisées par l’apoptose des cellules ganglionnaires de la rétine et la dégénérescence progressive du nerf optique. Il s’agit de la première cause de cécité irréversible, qui touche environ 60 millions de personnes dans le monde. Sa forme la plus commune est le glaucome à angle ouvert (GAO), un trouble polygénique causé principalement par une prédisposition génétique, en interaction avec d’autres facteurs de risque tels que l’âge et la pression intraoculaire élevée (PIO). Le GAO est une maladie génétique complexe, bien que certaines formes sévères sont autosomiques dominantes. Dix-sept loci ont été liés à la maladie et acceptés par la « Human Genome Organisation » (HUGO) et cinq gènes ont été identifiés à ces loci (MYOC, OPTN, WDR36, NTF4, ASB10). Récemment, des études d’association sur l’ensemble du génome ont identifié plus de 20 facteurs de risque fréquents, avec des effets relativement faibles. Depuis plus de 50 ans, notre équipe étudie 749 membres de la grande famille canadienne-française CA où la mutation MYOCK423E cause une forme autosomale dominante de GAO dont l’âge de début est fortement variable. Premièrement, il a été montré que cette variabilité de l’âge de début de l’hypertension intraoculaire possède une importante composante génétique causée par au moins un gène modificateur. Ce modificateur interagit avec la mutation primaire et altère la sévérité du glaucome chez les porteurs de MYOCK423E. Un gène modificateur candidat WDR36 a été génotypé dans 2 grandes familles CA et BV. Les porteurs de variations non-synonymes de WDR36 ainsi que de MYOCK423E de la famille CA ont montré une tendance à développer la maladie plus jeune. Un outil de forage de données a été développé pour représenter des informations connues relatives à la maladie et faciliter la priorisation des gènes candidats. Cet outil a été appliqué avec succès à la dépression bipolaire et au glaucome. La suite du projet consiste à finaliser un balayage de génome sur la famille CA et à séquencer les loci afin d’identifier les variations modificatrices du glaucome. Éventuellement, ces variations permettront d’identifier les individus dont le glaucome risque d’être plus agressif.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In-situ observations on the size and shape of particles in arctic cirrus are less common than those in mid-latitude and tropical cirrus with considerable uncertainty about the contributions of small ice crystals (maximum dimension D<50 µm) to the mass and radiative properties that impact radiative forcing. In situ measurements of small ice crystals in arctic cirrus were made during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) in April 2008 during transits of the National Research Council of Canada Convair-580 between Fairbanks and Barrow, Alaska and during Mixed Phase Arctic Cloud Experiment (MPACE) in October 2004 with the University of North Dakota (UND) Citation over Barrow, Alaska. Concentrations of small ice crystals with D < 50 μm from a Cloud and Aerosol Spectrometer (CAS), a Cloud Droplet Probe (CDP), a Forward Scattering Spectrometer Probe (FSSP), and a two-dimensional stereo probe (2DS) were compared as functions of the concentrations of crystals with D > 100 μm measured by a Cloud Imaging Probe (CIP) and two-dimensional stereo probe (2DS) in order to assess whether the shattering of large ice crystals on protruding components of different probes artificially amplified measurements of small ice crystal concentrations. The dependence of the probe comparison on other variables as CIP N>100 (number concentrations greater than diameter D>100 μm),temperature, relative humidity respect to ice (RHice), dominant habit from the Cloud Particle Imager (CPI), aircraft roll, pitch, true air speed and angle of attack was examined to understand potential causes of discrepancies between probe concentrations. Data collected by these probes were also compared against the data collected by a CAS, CDP and CIP during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) and by a CAS and 2DS during the Tropical Composition, Cloud and Climate Coupling (TC4) missions. During ISDAC, the CAS and FSSP both overestimated measurements of small ice crystals compared to both the CDP and 2DS by 1-2 orders of magnitude. Further, the amount of overestimation increased with the concentrations from the CIP2 (N>100 > 0.1 L-1). There was an unexplained discrepancy in concentrations of small crystals between the CDP and 2DS during ISDAC. In addition, there was a strong dependence on RHice of the average ratios of the N3-50, CAS/N3-50,CDP, N3-50, FSSP096/N3-50,CDP, N3-50, CAS/N3-50,FSSP096, N10-50, CDP/N3-50,2DS, N10-50, FSSP096/N10-50,2DS. Continued studies are needed to understand the discrepancy of these probes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this project was to investigate very small strain elastic behaviour of soils under unsaturated conditions, using bender/extender element (BEE) testing. The behaviour of soils at very small strains has been widely studied under saturated conditions, whereas much less work has been performed on very small strain behaviour under unsaturated conditions. A suction-controlled double wall triaxial apparatus for unsaturated soil testing was modified to incorporate three pairs of BEEs transmitting both shear and compression waves with vertical and horizontal directions of wave transmission and wave polarisation. Various different techniques for measuring wave travel time were investigated in both the time domain and the frequency domain and it was concluded that, at least for the current experimental testing programme, peak-to-first-peak in the time domain was the most reliable technique for determining wave travel time. An experimental test programme was performed on samples of compacted speswhite kaolin clay. Two different forms of compaction were employed (i.e. isotropic and anisotropic). Compacted kaolin soil samples were subjected to constant suction loading and unloading stages at three different values of suction, covering both unsaturated conditions (s= 50kPa and s= 300kPa) and saturated conditions (s=0). Loading and unloading stages were performed at three different values of stress ratio (η=0, η=1 and η=-1 ). In some tests a wetting-drying cycle was performed before or within the loading stage, with the wetting-drying cycles including both wetting-induced swelling and wetting-induced collapse compression. BEE tests were performed at regular intervals throughout all test stages, to measure shear wave velocity Vs and compression wave velocity Vp and hence to determine values of shear modulus G and constrained modulus M. The experimental test programme was designed to investigate how very small strain shear modulus G and constrained modulus M varied with unsaturated state variables, including how anisotropy of these parameters developed either with stress state (stress-induced anisotropy) or with previous straining (strain-induced anisotropy). A new expression has been proposed for the very small strain shear modulus G of an isotropic soil under saturated and unsaturated conditions. This expression relates the variation of G to only mean Bishop’s stress p* and specific volume v, and it converges to a well-established expression for saturated soils as degree of saturation approaches 1. The proposed expression for G is able to predict the variation of G under saturated and unsaturated conditions at least as well as existing expressions from the literature and it is considerably simpler (employing fewer state variables and fewer soil constants). In addition, unlike existing expressions from the literature, the values of soil constants in the proposed new expression can be determined from a saturated test. It appeared that, in the current project at least, any strain-induced anisotropy of very small strain elastic behaviour was relatively modest, with the possible exception of loading in triaxial extension. It was therefore difficult to draw any firm conclusion about evolution of strain-induced anisotropy and whether it depended upon the same aspects of soil fabric as evolution of anisotropy of large strain plastic behaviour. Stress-induced anisotropy of very small strain elastic behaviour was apparent in the experimental test programme. An attempt was made to extend the proposed expression for G to include the effect of stress-induced anisotropy. Interpretation of the experimental results indicated that the value of shear modulus was affected by the values of all three principal Bishop’s stresses (in the direction of wave transmission, the direction of wave polarisation and the third mutually perpendicular direction). However, prediction of stress-induced anisotropy was only partially successful, and it was concluded that the effect of Lode angle was also significant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This document introduces the planned new search for the neutron Electric Dipole Moment at the Spallation Neutron Source at the Oak Ridge National Laboratory. A spin precession measurement is to be carried out using Ultracold neutrons diluted in a superfluid Helium bath at T = 0.5 K, where spin polarized 3He atoms act as detector of the neutron spin polarization. This manuscript describes some of the key aspects of the planned experiment with the contributions from Caltech to the development of the project.

Techniques used in the design of magnet coils for Nuclear Magnetic Resonance were adapted to the geometry of the experiment. Described is an initial design approach using a pair of coils tuned to shield outer conductive elements from resistive heat loads, while inducing an oscillating field in the measurement volume. A small prototype was constructed to test the model of the field at room temperature.

A large scale test of the high voltage system was carried out in a collaborative effort at the Los Alamos National Laboratory. The application and amplification of high voltage to polished steel electrodes immersed in a superfluid Helium bath was studied, as well as the electrical breakdown properties of the electrodes at low temperatures. A suite of Monte Carlo simulation software tools to model the interaction of neutrons, 3He atoms, and their spins with the experimental magnetic and electric fields was developed and implemented to further the study of expected systematic effects of the measurement, with particular focus on the false Electric Dipole Moment induced by a Geometric Phase akin to Berry’s phase.

An analysis framework was developed and implemented using unbinned likelihood to fit the time modulated signal expected from the measurement data. A collaborative Monte Carlo data set was used to test the analysis methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crosswell data set contains a range of angles limited only by the geometry of the source and receiver configuration, the separation of the boreholes and the depth to the target. However, the wide angles reflections present in crosswell imaging result in amplitude-versus-angle (AVA) features not usually observed in surface data. These features include reflections from angles that are near critical and beyond critical for many of the interfaces; some of these reflections are visible only for a small range of angles, presumably near their critical angle. High-resolution crosswell seismic surveys were conducted over a Silurian (Niagaran) reef at two fields in northern Michigan, Springdale and Coldspring. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. Combining the results from images obtained from above with those from beneath provides additional information, by exhibiting ranges of angles that are different for the two images, especially for reflectors at shallow depths, and second, by providing additional constraints on the solutions for Zoeppritz equations. Inversion of seismic data for impedance has become a standard part of the workflow for quantitative reservoir characterization. Inversion of crosswell data using either deterministic or geostatistical methods can lead to poor results with phase change beyond the critical angle, however, the simultaneous pre-stack inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Deterministic inversion is designed to yield only a single model of elastic properties (best-fit), while the geostatistical inversion produces multiple models (realizations) of elastic properties, lithology and reservoir properties. Geostatistical inversion produces results with far more detail than deterministic inversion. The magnitude of difference in details between both types of inversion becomes increasingly pronounced for thinner reservoirs, particularly those beyond the vertical resolution of the seismic. For any interface imaged from above and from beneath, the results AVA characters must result from identical contrasts in elastic properties in the two sets of images, albeit in reverse order. An inversion approach to handle both datasets simultaneously, at pre-critical angles, is demonstrated in this work. The main exploration problem for carbonate reefs is determining the porosity distribution. Images of elastic properties, obtained from deterministic and geostatistical simultaneous inversion of a high-resolution crosswell seismic survey were used to obtain the internal structure and reservoir properties (porosity) of Niagaran Michigan reef. The images obtained are the best of any Niagaran pinnacle reef to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis investigates the rotational behavior of abstracted small-wind-turbine rotors exposed to a sudden increase in oncoming flow velocity, i.e. a gust. These rotors consisted of blades with aspect ratios characteristic of samara seeds, which are known for their ability to maintain autorotation in unsteady wind. The models were tested in a towing tank using a custom-built experimental rig. The setup was designed and constructed to allow for the measurement of instantaneous angular velocity of a rotor model towed at a prescribed kinematic profile along the tank. The conclusions presented in this thesis are based on the observed trends in effective angle-of-attack distribution, tip speed ratio, angular velocity, and time delay in the rotational response for each of rotors over prescribed gust cases. It was found that the blades with the higher aspect ratio had higher tip speed ratios and responded faster than the blades with a lower aspect ratio. The decrease in instantaneous tip speed ratio during the onset of a prescribed gust correlated with the time delay in each rotor model's rotational response. The time delays were found to increase nonlinearly with decreasing durations over which the simulated gusts occurred.