787 resultados para Slit-Nozzle
Resumo:
We analyze the physical-chemical surface properties of single-slit, single-groove subwavelength-structured silver films with high-resolution transmission electron microscopy and calculate exact solutions to Maxwell’s equations corresponding to recent far-field interferometry experiments using these structures. Contrary to a recent suggestion the surface analysis shows that the silver films are free of detectable contaminants. The finite-difference time-domain calculations, in excellent agreement with experiment, show a rapid fringe amplitude decrease in the near zone (slit-groove distance out to 3–4 wavelengths). Extrapolation to slit-groove distances beyond the near zone shows that the surface wave evolves to the expected bound surface plasmon polariton (SPP). Fourier analysis of these results indicates the presence of a distribution of transient, evanescent modes around the SPP that dephase and dissipate as the surface wave evolves from the near to the far zone.
Resumo:
The goal of this work is to present an efficient CAD-based adjoint process chain for calculating parametric sensitivities (derivatives of the objective function with respect to the CAD parameters) in timescales acceptable for industrial design processes. The idea is based on linking parametric design velocities (geometric sensitivities computed from the CAD model) with adjoint surface sensitivities. A CAD-based design velocity computation method has been implemented based on distances between discrete representations of perturbed geometries. This approach differs from other methods due to the fact that it works with existing commercial CAD packages (unlike most analytical approaches) and it can cope with the changes in CAD model topology and face labeling. Use of the proposed method allows computation of parametric sensitivities using adjoint data at a computational cost which scales with the number of objective functions being considered, while it is essentially independent of the number of design variables. The gradient computation is demonstrated on test cases for a Nozzle Guide Vane (NGV) model and a Turbine Rotor Blade model. The results are validated against finite difference values and good agreement is shown. This gradient information can be passed to an optimization algorithm, which will use it to update the CAD model parameters.
Resumo:
Increase in the Balmer continuum radiation during solar flares was predicted by various authors, but has never been firmly confirmed observationally using ground-based slit spectrographs. Here we describe a new post-focal instrument, the image selector, with which the Balmer continuum flux can be measured from the whole flare area, in analogy to successful detections of flaring dMe stars. The system was developed and put into operation at the horizontal solar telescope HSFA2 of the Ondřejov Observatory. We measure the total flux by a fast spectrometer from a limited but well-defined region on the solar disk. Using a system of diaphragms, the disturbing contribution of a bright solar disk can be eliminated as much as possible. Light curves of the measured flux in the spectral range 350 – 440 nm are processed, together with the Hα images of the flaring area delimited by the appropriate diaphragm. The spectral flux data are flat-fielded, calibrated, and processed to be compared with model predictions. Our analysis of the data proves that the described device is sufficiently sensitive to detect variations in the Balmer continuum during solar flares. Assuming that the Balmer-continuum kernels have at least a similar size as those visible in Hα, we find the flux increase in the Balmer continuum to reach 230 – 550 % of the quiet continuum during the observed X-class flare. We also found temporal changes in the Balmer continuum flux starting well before the onset of the flare in Hα.
Resumo:
We describe the design, construction and commissioning of LOTUS; a simple, low-cost long-slit spectrograph for the Liverpool Telescope. The design is optimized for near-UV and visible wavelengths and uses all transmitting optics. It exploits the instrument focal plane field curvature to partially correct axial chromatic aberration. A stepped slit provides narrow (2.5x95 arcsec) and wide (5x25 arcsec) options that are optimized for spectral resolution and flux calibration respectively. On sky testing shows a wavelength range of 3200-6300 Angstroms with a peak system throughput (including detector quantum efficiency) of 15 per cent and wavelength dependant spectral resolution of R=225-430. By repeated observations of the symbiotic emission line star AG Peg we demonstrate the wavelength stability of the system is less than 2 Angstroms rms and is limited by the positioning of the object in the slit. The spectrograph is now in routine operation monitoring the activity of comet 67P/Churyumov-Gerasimenko during its current post-perihelion apparition.
Resumo:
Objective: To determine the prevalence of ocular findings of the external structures and anterior segment of the eye, detected by biomicroscopic examination in schoolchildren in Natal (RN) - Brazil. Methods: After previous random selection, 1,024 pupils from elementary and secondary public and private schools in the city of Natal were evaluated from March to June 2001. All were submitted to preestablished standard research norms, consisting of identification, demographic information, ophthalmologic biomicroscopic examination, with slit lamp, performed by ophthalmologists from the “Onofre Lopes” University Hospital. Results: Alterations of the conjunctival and palpebral conditions were the most prevalent (10.4% and 6.2% respectively). Follicles (4.2%) and papillae (3.0%) were the frequent conjunctival lesions, while blepharitis (3.5%) and meibomitis (1.1%) were the most detected abnormalities in the eyelids. Upon examining the cornea, iris, lens and anterior vitreous, the most encountered findings were nubecula (0.5%), papillary membrane reliquiae (0.5%), posterior capsula opacity (0.8%) and hyaloid arteria reliquiae (2.0%). Conclusion: The most prevalent findings affecting the external structures of the eye such as eyelids and conjunctiva, consisted of blepharitis followed by follicular reaction of the conjunctiva. The most prevalent abnormalities in the cornea, iris, lens and anterior vitreous were nubecula, papillary membrane reliquiae, posterior capsular opacity and hyaloid arteria reliquiae, in that order
Resumo:
La galaxie spirale barrée NGC 5430 est particulière en ce sens qu’elle présente un noeud Wolf-Rayet très lumineux et des bras asymétriques. Des spectres longue-fente le long de la barre et dans le bras déformé ainsi que des données SpIOMM couvrant l’ensemble de la galaxie ont été analysées. L’absorption stellaire sous-jacente a été soustraite des spectres longue-fente à l’aide d’un ajustement de modèles théoriques de populations stellaires fait avec le programme GANDALF. L’absorption a un impact très important sur le calcul de l’extinction ainsi que sur les différents diagnostics propres aux régions HII et aux populations stellaires jeunes. Enfin, cette étude montre que NGC 5430 comporte une composante gazeuse ionisée diffuse sur toute son étendue et qu’il est important d’en tenir compte afin d’appliquer correctement les diagnostics. Un des scénarios évolutifs proposés au terme de cette étude est que le noeud Wolf-Rayet constitue le restant d’une petite galaxie ou d’un nuage intergalactique qui serait entré en collision avec NGC 5430. Une structure englobant le noeud Wolf-Rayet se déplace à une vitesse considérablement inférieure (50 - 70 km s-1) à celle attendue à une telle distance du centre de la galaxie (200 - 220 km s-1). De plus, le noeud Wolf-Rayet semble très massif puisque l’intensité maximale du continu stellaire de cette région est semblable à celle du noyau et est de loin supérieure à celle de l’autre côté de la barre. Le nombre d’étoiles Wolf-Rayet (2150) est aussi considérable. Il n’est toutefois pas exclu que la différence de vitesses observée témoigne d’un écoulement de gaz le long de la barre, qui alimenterait la formation stellaire du noeud Wolf-Rayet ou du noyau.
Resumo:
Purpose: It is important to establish a differential diagnosis between the different types of nystagmus, in order to give the appropriate clinical approach to every situation and to improve visual acuity. The nystagmus is normally blocked when the eyes are positioned in a particular way. This makes the child adopt a posture of ocular torticollis that reduces the nistagmiformes movements, improving the vision in this position. A way to promote the blocking of the nystagmic movements is by using prismatic lenses with opposite bases, to block or minimize the oscillatory movements. This results in a vision improvement and it reduces the anomalous head position. There is limited research on the visual results in children with nystagmus after using prisms with opposing bases. Our aim is to describe the impact on the visual acuity (VA ) of theprescription prism lenses in a nystagmus patient starting at 3 months of age. Methods: Case report on thirty month old caucasian male infant, with normal growth and development for their age, with an early onset of horizontal nystagmus at 3 months of age. Ophthalmic examination included slit lamp examination, fundus, refractive study, electrophysiological and magnetic resonance tests, measurement of VA over time with the Teller Acuity Cards (TAC ) in the distance agreed for the age. At age ten months, the mother noted a persistent turn to the right of the child’s head, which became increasingly more severe along the months. There’s no oscillopcia. At 24 months, an atropine refraction showed the following refractive error: 0D.: -1,50, OS: -0,50 and prismatic lens adapting OD 8 Δ nasal base and OE 8 Δ temporal base. Results: Thirty month old child, with adequate development for their age, with onset of idiopatic horizontal nystagmus, at 3 months of age. Normal ocular fundus and magnetic ressoance without alterations, sub-normal results in electrophysiological tests and VA with values below normal for age. At 6 months OD 20/300; OE 20/400; OU 20/300. At 9 months OD 20/250; OE 20/300; OU 20/150 (TAC a 38 cm). At 18 months OD 20/200; OE 20/100; OU 20/80 (TAC at 38 cm), when the head is turned to the right and the eyes in levoversão, the nystagmus decreases in a “neutral” area. At 24 month, with the prismatic glasses, OD 20/200 OE 20/100, OU20/80 (TAC at 54 cm, reference value is 20/30 – 20/100 para OU e 20/40 – 20/100 monocular), there was an increase in the visual acuity. The child did visual stimulation with multimedia devices and using glasses. After adaptation of prisms: at 30 months VA (with Cambridge cards) OD e OE = 6/18. The child improved the VA and reduced the anomalous head position. There is also improvement in mobility and fine motricity. Conclusion: Prisms with opposing bases., were used in the treatment of idiopathic nystagmus. Said prisms were adapted to reduce the skewed position of the head, and to improve VA and binocular function. Monitoring of visual acuity and visual stimulation was done using electronic devices. Following the use of prismatic, the patient improved significantly VA and the anomalous head position was reduced.
Resumo:
Mammography is one of the most technically demanding examinations in radiology, and it requires X-ray technology designed specifi cally for the task. The pathology to be imaged ranges from small (20–100 μm) high density microcalcifications to ill-defi ned low contrast masses. These must be imaged against a background of mixed densities. This makes demonstrating pathology challenging. Because of its use in asymptomatic screening, mammography must also employ as low a radiation dose as possible.
Resumo:
Numerous studies of the dual-mode scramjet isolator, a critical component in preventing inlet unstart and/or vehicle loss by containing a collection of flow disturbances called a shock train, have been performed since the dual-mode propulsion cycle was introduced in the 1960s. Low momentum corner flow and other three-dimensional effects inherent to rectangular isolators have, however, been largely ignored in experimental studies of the boundary layer separation driven isolator shock train dynamics. Furthermore, the use of two dimensional diagnostic techniques in past works, be it single-perspective line-of-sight schlieren/shadowgraphy or single axis wall pressure measurements, have been unable to resolve the three-dimensional flow features inside the rectangular isolator. These flow characteristics need to be thoroughly understood if robust dual-mode scramjet designs are to be fielded. The work presented in this thesis is focused on experimentally analyzing shock train/boundary layer interactions from multiple perspectives in aspect ratio 1.0, 3.0, and 6.0 rectangular isolators with inflow Mach numbers ranging from 2.4 to 2.7. Secondary steady-state Computational Fluid Dynamics studies are performed to compare to the experimental results and to provide additional perspectives of the flow field. Specific issues that remain unresolved after decades of isolator shock train studies that are addressed in this work include the three-dimensional formation of the isolator shock train front, the spatial and temporal low momentum corner flow separation scales, the transient behavior of shock train/boundary layer interaction at specific coordinates along the isolator's lateral axis, and effects of the rectangular geometry on semi-empirical relations for shock train length prediction. A novel multiplane shadowgraph technique is developed to resolve the structure of the shock train along both the minor and major duct axis simultaneously. It is shown that the shock train front is of a hybrid oblique/normal nature. Initial low momentum corner flow separation spawns the formation of oblique shock planes which interact and proceed toward the center flow region, becoming more normal in the process. The hybrid structure becomes more two-dimensional as aspect ratio is increased but corner flow separation precedes center flow separation on the order of 1 duct height for all aspect ratios considered. Additional instantaneous oil flow surface visualization shows the symmetry of the three-dimensional shock train front around the lower wall centerline. Quantitative synthetic schlieren visualization shows the density gradient magnitude approximately double between the corner oblique and center flow normal structures. Fast response pressure measurements acquired near the corner region of the duct show preliminary separation in the outer regions preceding centerline separation on the order of 2 seconds. Non-intrusive Focusing Schlieren Deflectometry Velocimeter measurements reveal that both shock train oscillation frequency and velocity component decrease as measurements are taken away from centerline and towards the side-wall region, along with confirming the more two dimensional shock train front approximation for higher aspect ratios. An updated modification to Waltrup \& Billig's original semi-empirical shock train length relation for circular ducts based on centerline pressure measurements is introduced to account for rectangular isolator aspect ratio, upstream corner separation length scale, and major- and minor-axis boundary layer momentum thickness asymmetry. The latter is derived both experimentally and computationally and it is shown that the major-axis (side-wall) boundary layer has lower momentum thickness compared to the minor-axis (nozzle bounded) boundary layer, making it more separable. Furthermore, it is shown that the updated correlation drastically improves shock train length prediction capabilities in higher aspect ratio isolators. This thesis suggests that performance analysis of rectangular confined supersonic flow fields can no longer be based on observations and measurements obtained along a single axis alone. Knowledge gained by the work performed in this study will allow for the development of more robust shock train leading edge detection techniques and isolator designs which can greatly mitigate the risk of inlet unstart and/or vehicle loss in flight.
Resumo:
The work consists in wheat production system and the evolution of damage caused by wheat scab. The study considers the lack of resistant cultivars to the disease, the low efficiency of chemical control and the presence of mycotoxins in grains. The study aimed to confirm the effectiveness of fungicides prothioconazole and metconazole; prove the bar deposition efficiency with nozzles directed jets the side of the ear resulting in full coverage of trapped anthers; prove the viability of using a warning system (application after the start of flowering before the onset of rains provided for future 24-48 hours and try to improve the efficiency in controlling scab. The experiment was conducted in the experimental field of Technological University Federal do Paraná in the city of Pato Branco, Paraná, conducted in two seasons, the first established on May 6, 2014 and the second on 21 May 2014. It was used to cultivate Amethyst field of OR Improvement seeds, . Passo Fundo, Rio Grande do Sul Treatments consisted of a control without fungicide application and one and two applications of prothioconazole + 17.5% trifloxystrobin (Fox) 500 ml / ha; metconazole 8.0% + pyraclostrobin 13% ( Opera Ultra) 750 mL / ha In the evaluation, second season, metconazole + pyraclostrobin with two application statistically was the treatment that showed a lower incidence in spikes reducing from 100 to 63.3%;. metconazole + pyraclostrobin performed better also in reducing the incidence of spikelets, 80.3% to 34.7%; the control ears had better results in the second season with two applications of metconazole + pyraclostrobin; in spikelets, in his first season, metconazole + pyraclostrobin with two application resulted in better control with 67%; with two applications of metconazole + pyraclostrobin gave the highest yield even under climatic conditions favorable to disease; metconazole + pyraclostrobin in both seasons showed superior efficiency in controlling FHB giving greater weight gain; with two application of both fungicides, the hectoliter weight was 81 and 79, respectively, each fungicide; the application of fungicides was made in advance of expected rain, occurring seven days of rain and a total volume of 85,2mm the first time, and 16 days of rain and an accumulation of 400 mm in the second period; the test efficiency can be confirmed when the direction of the spray jets launched wings coupled in double nozzle bodies perpendicular to the target upright reaches the sides of the spike. The metconazole + pyraclostrobin proved the most effective fungicide against the prothioconazole + trifloxystrobin in wheat scab control in the 2014 harvest.
Resumo:
On the presumption that a sharp edge may be represented by a hyperbola, a conformal transformation method is used to derive electric field equations for a sharp edge suspended above a flat plate. A further transformation is then introduced to give electric field components for a sharp edge suspended above a thin slit. Expressions are deduced for the field strength at the vertex of the edge in both arrangements. The calculated electric field components are used to compute ion trajectories in the simple edge/flat-plate case. The results are considered in relation to future study of ion focusing and unimolecular decomposition of ions in field ionization mass spectrometers.
Resumo:
Objective: To determine the prevalence of ocular findings of the external structures and anterior segment of the eye, detected by biomicroscopic examination in schoolchildren in Natal (RN) - Brazil. Methods: After previous random selection, 1,024 pupils from elementary and secondary public and private schools in the city of Natal were evaluated from March to June 2001. All were submitted to preestablished standard research norms, consisting of identification, demographic information, ophthalmologic biomicroscopic examination, with slit lamp, performed by ophthalmologists from the “Onofre Lopes” University Hospital. Results: Alterations of the conjunctival and palpebral conditions were the most prevalent (10.4% and 6.2% respectively). Follicles (4.2%) and papillae (3.0%) were the frequent conjunctival lesions, while blepharitis (3.5%) and meibomitis (1.1%) were the most detected abnormalities in the eyelids. Upon examining the cornea, iris, lens and anterior vitreous, the most encountered findings were nubecula (0.5%), papillary membrane reliquiae (0.5%), posterior capsula opacity (0.8%) and hyaloid arteria reliquiae (2.0%). Conclusion: The most prevalent findings affecting the external structures of the eye such as eyelids and conjunctiva, consisted of blepharitis followed by follicular reaction of the conjunctiva. The most prevalent abnormalities in the cornea, iris, lens and anterior vitreous were nubecula, papillary membrane reliquiae, posterior capsular opacity and hyaloid arteria reliquiae, in that order
Resumo:
Simulations of droplet dispersion behind cylinder wakes and downstream of icing tunnel spray bars were conducted. In both cases, a range of droplet sizes were investigated numerically with a Lagrangian particle trajectory approach while the turbulent air flow was investigated with a hybrid Reynolds-Averaged Navier-Stokes/Large-Eddy Simulations approach scheme. In the first study, droplets were injected downstream of a cylinder at sub-critical conditions (i.e. with laminar boundary layer separation). A stochastic continuous random walk (CRW) turbulence model was used to capture the effects of sub-grid turbulence. Small inertia droplets (characterized by small Stokes numbers) were affected by both the large-scale and small-scale vortex structures and closely followed the air flow, while exhibiting a dispersion consistent with that of a scalar flow field. Droplets with intermediate Stokes numbers were centrifuged by the vortices to the outer edges of the wake, yielding an increased dispersion. Large Stokes number droplets were found to be less responsive to the vortex structures and exhibited the least dispersion. Particle concentration was also correlated with vorticity distribution which yielded preferential bias effects as a function of different particle sizes. This trend was qualitatively similar to results seen in homogenous isotropic turbulence, though the influence of particle inertia was less pronounced for the cylinder wake case. A similar study was completed for droplet dispersion within the Icing Research Tunnel (IRT) at the NASA Glenn Research Center, where it is important to obtain a nearly uniform liquid water content (LWC) distribution in the test section (to recreate atmospheric icing conditions).. For this goal, droplets are diffused by the mean and turbulent flow generated from the nozzle air jets, from the upstream spray bars, and from the vertical strut wakes. To understand the influence of these three components, a set of simulations was conducted with a sequential inclusion of these components. Firstly, a jet in an otherwise quiescent airflow was simulated to capture the impact of the air jet on flow turbulence and droplet distribution, and the predictions compared well with experimental results. The effects of the spray bar wake and vertical strut wake were then included with two more simulation conditions, for which it was found that the air jets were the primary driving force for droplet dispersion, i.e. that the spray bar and vertical strut wake effects were secondary.
Resumo:
Infrared chemiluminescence (IRCL) studies of cw metal oxidation reactions wherein metal atoms entrained in a carrier gas were mixed with an oxidizer by means of a nozzle system are described. One goal of the work was to determine the vibrational distribution of the product molecule produced by the chemical reaction. In order to observe IRCL it was important to operate the system at the appropriate P-T point in the phase diagram of both the metal and metal salt, otherwise rapid condensation quenched any IRCL that was present. If the nucleation rate was greater 1010 3 than ~ cm-sec-I, then only "black body" radiation could be seen from the reaction. Most of the studies were on the Li/I2 system which is unique in that the phase diagrams of Li and LiI in the P-T ranges of interest are almost identical. This property permitted a relatively easy control with respect to condensation and the measurement of IRCL in the 10-28 um range for the excited LiI molecule.
Resumo:
This thesis develops and tests various transient and steady-state computational models such as direct numerical simulation (DNS), large eddy simulation (LES), filtered unsteady Reynolds-averaged Navier-Stokes (URANS) and steady Reynolds-averaged Navier-Stokes (RANS) with and without magnetic field to investigate turbulent flows in canonical as well as in the nozzle and mold geometries of the continuous casting process. The direct numerical simulations are first performed in channel, square and 2:1 aspect rectangular ducts to investigate the effect of magnetic field on turbulent flows. The rectangular duct is a more practical geometry for continuous casting nozzle and mold and has the option of applying magnetic field either perpendicular to broader side or shorter side. This work forms the part of a graphic processing unit (GPU) based CFD code (CU-FLOW) development for magnetohydrodynamic (MHD) turbulent flows. The DNS results revealed interesting effects of the magnetic field and its orientation on primary, secondary flows (instantaneous and mean), Reynolds stresses, turbulent kinetic energy (TKE) budgets, momentum budgets and frictional losses, besides providing DNS database for two-wall bounded square and rectangular duct MHD turbulent flows. Further, the low- and high-Reynolds number RANS models (k-ε and Reynolds stress models) are developed and tested with DNS databases for channel and square duct flows with and without magnetic field. The MHD sink terms in k- and ε-equations are implemented as proposed by Kenjereš and Hanjalić using a user defined function (UDF) in FLUENT. This work revealed varying accuracies of different RANS models at different levels. This work is useful for industry to understand the accuracies of these models, including continuous casting. After realizing the accuracy and computational cost of RANS models, the steady-state k-ε model is then combined with the particle image velocimetry (PIV) and impeller probe velocity measurements in a 1/3rd scale water model to study the flow quality coming out of the well- and mountain-bottom nozzles and the effect of stopper-rod misalignment on fluid flow. The mountain-bottom nozzle was found more prone to the longtime asymmetries and higher surface velocities. The left misalignment of stopper gave higher surface velocity on the right leading to significantly large number of vortices forming behind the nozzle on the left. Later, the transient and steady-state models such as LES, filtered URANS and steady RANS models are combined with ultrasonic Doppler velocimetry (UDV) measurements in a GaInSn model of typical continuous casting process. LES-CU-LOW is the fastest and the most accurate model owing to much finer mesh and a smaller timestep. This work provided a good understanding on the performance of these models. The behavior of instantaneous flows, Reynolds stresses and proper orthogonal decomposition (POD) analysis quantified the nozzle bottom swirl and its importance on the turbulent flow in the mold. Afterwards, the aforementioned work in GaInSn model is extended with electromagnetic braking (EMBr) to help optimize a ruler-type brake and its location for the continuous casting process. The magnetic field suppressed turbulence and promoted vortical structures with their axis aligned with the magnetic field suggesting tendency towards 2-d turbulence. The stronger magnetic field at the nozzle well and around the jet region created large scale and lower frequency flow behavior by suppressing nozzle bottom swirl and its front-back alternation. Based on this work, it is advised to avoid stronger magnetic field around jet and nozzle bottom to get more stable and less defect prone flow.