899 resultados para Signaling pathway


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The ability of neurotrophins to modulate the survival and differentiation of neuronal populations involves the Trk/MAP (mitogen-activated protein kinase) kinase signaling pathway. More recently, neurotrophins have also been shown to regulate synaptic transmission. The synapsins are a family of neuron-specific phosphoproteins that play a role in regulation of neurotransmitter release, in axonal elongation, and in formation and maintenance of synaptic contacts. We report here that synapsin I is a downstream effector for the neurotrophin/Trk/MAP kinase cascade. Using purified components, we show that MAP kinase stoichiometrically phosphorylated synapsin I at three sites (Ser-62, Ser-67, and Ser-549). Phosphorylation of these sites was detected in rat brain homogenates, in cultured cerebrocortical neurons, and in isolated presynaptic terminals. Brain-derived neurotrophic factor and nerve growth factor upregulated phosphorylation of synapsin I at MAP kinase-dependent sites in intact cerebrocortical neurons and PC12 cells, respectively, while KCl- induced depolarization of cultured neurons decreased the phosphorylation state at these sites. MAP kinase-dependent phosphorylation of synapsin I significantly reduced its ability to promote G-actin polymerization and to bundle actin filaments. The results suggest that MAP kinase-dependent phosphorylation of synapsin I may contribute to the modulation of synaptic plasticity by neurotrophins and by other signaling pathways that converge at the level of MAP kinase activation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phagocytosis is a phylogenetically primitive mechanism adapted by specialized cells of the immune system to ingest particulate pathogens. Recent evidence suggests that the program of specific cytoskeletal rearrangements that underlies phagocytosis may share elements with the antigen receptor signaling pathway in lymphocytes. Tyrosine phosphorylation, necessary for both lymphocyte effector function and phagocytosis, is thought to allow cytoskeletal elements to couple to the intracellular domains of antigen and Fc receptor subunits. We show here that the intracellular domains of the receptors are not inherently required for cytoskeletal coupling. Chimeric transmembrane proteins bearing syk but not src family tyrosine kinase domains are capable of autonomously triggering phagocytosis and redistribution of filamentous actin in COS cells. These responses cannot be initiated by a receptor chimera bearing a point mutation in the syk catalytic domain, and the kinase domain alone is sufficient for initiating cytoskeletal coupling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To understand the mechanisms by which electrical activity may generate long-term responses in the nervous system, we examined how activation of voltage-sensitive calcium channels (VSCCs) can stimulate the Ras/mitogen-activated protein kinase (MAPK) signaling pathway. Calcium influx through L-type VSCCs leads to tyrosine phosphorylation of the adaptor protein Shc and its association with the adaptor protein Grb2, which is bound to the guanine nucleotide exchange factor Sos1. In response to calcium influx, Shc, Grb2, and Sos1 inducibly associate with a 180-kDa tyrosine-phosphorylated protein, which was determined to be the epidermal growth factor receptor (EGFR). Calcium influx induces tyrosine phosphorylation of the EGFR to levels that can activate the MAPK signaling pathway. Thus, ion channel activation stimulates growth factor receptor signal transduction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fertilization in Chlamydomonas is initiated by adhesive interactions between gametes of opposite mating types through flagellar glycoproteins called agglutinins. Interactions between these cell adhesion molecules signal for the activation of adenylyl cyclase through an interplay of protein kinases and ultimately result in formation of a diploid zygote. One of the early events during adhesion-induced signal transduction is the rapid inactivation of a flagellar protein kinase that phosphorylates a 48-kDa protein in the flagella. We report the biochemical and molecular characterization of the 48-kDa protein. Experiments using a bacterially expressed fusion protein show that the 48-kDa protein is capable of autophosphorylation on serine and tyrosine and phosphorylation of bovine beta-casein on serine, confirming that the 48-kDa protein itself has protein kinase activity. This protein kinase exhibits limited homology to members of the eukaryotic protein kinase superfamily and may be an important element in a signaling pathway in fertilization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A previously undescribed 62-kDa protein (p62) that does not contain phosphotyrosine but, nevertheless, binds specifically to the isolated src homology 2 (SH2) domain of p56lck has been identified. The additional presence of the unique N-terminal region of p56lck prevents p62 binding to the SH2 domain. However, phosphorylation at Ser-59 (or alternatively, its mutation to Glu) reverses the inhibition and allows interaction of the p56lck SH2 domain with p62. Moreover, p62 is associated with a serine/threonine kinase activity and also binds to ras GTPase-activating protein, a negative regulator of the ras signaling pathway. Thus, phosphotyrosine-independent binding of p62 to the p56lck SH2 domain appears to provide an alternative pathway for p56lck signaling that is regulated by Ser-59 phosphorylation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fasciclin II (Fas II), an NCAM-like cell adhesion molecule in Drosophila, is expressed on a subset of embryonic axons and controls selective axon fasiculation. Fas II is also expressed in imaginal discs. Here we use genetic analysis to show that Fas II is required for the control of proneural gene expression. Clusters of cells in the eye-antennal imaginal disc express the achaete proneural gene and give rise to mechanosensory neurons; other clusters of cells express the atonal gene and give rise to ocellar photoreceptor neurons. In fasII loss-of-function mutants, the expression of both proneural genes is absent in certain locations, and, as a result, the corresponding sensory precursors fail to develop. In fasII gain-of-function conditions, extra sensory structures arise from this same region of the imaginal disc. Mutations in the Abelson tyrosine kinase gene show dominant interactions with fasII mutations, suggesting that Abl and Fas II function in a signaling pathway that controls proneural gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To identify potential signaling molecules involved in mediating insulin-induced biological responses, a yeast two-hybrid screen was performed with the cytoplasmic domain of the human insulin receptor (IR) as bait to trap high-affinity interacting proteins encoded by human liver or HeLa cDNA libraries. A SH2-domain-containing protein was identified that binds with high affinity in vitro to the autophosphorylated IR. The mRNA for this protein was found by Northern blot analyses to be highest in skeletal muscle and was also detected in fat by PCR. To study the role of this protein in insulin signaling, a full-length cDNA encoding this protein (called Grb-IR) was isolated and stably expressed in Chinese hamster ovary cells overexpressing the human IR. Insulin treatment of these cells resulted in the in situ formation of a complex of the IR and the 60-kDa Grb-IR. Although almost 75% of the Grb-IR protein was bound to the IR, it was only weakly tyrosine-phosphorylated. The formation of this complex appeared to inhibit the insulin-induced increase in tyrosine phosphorylation of two endogenous substrates, a 60-kDa GTPase-activating-protein-associated protein and, to a lesser extent, IR substrate 1. The subsequent association of this latter protein with phosphatidylinositol 3-kinase also appeared to be inhibited. These findings raise the possibility that Grb-IR is a SH2-domain-containing protein that directly complexes with the IR and serves to inhibit signaling or redirect the IR signaling pathway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thyroid gland function is regulated by the hypothalamic-pituitary axis via the secretion of TSH, according to environmental, developmental, and circadian stimuli. TSH modulates both the secretion of thyroid hormone and gland trophism through interaction with a specific guanine nucleotide-binding protein-coupled receptor (TSH receptor; TSH-R), which elicits the activation of the cAMP-dependent signaling pathway. After TSH stimulation, the levels of TSH-R RNA are known to decrease dramatically within a few hours. This phenomenon ultimately leads to homologous long-term desensitization of the TSH-R. Here we show that TSH drives the induction of the inducible cAMP early repressor (ICER) isoform of the cAMP response element (CRE) modulator gene both in rat thyroid gland and in the differentiated thyroid cell line FRTL-5. The kinetics of ICER protein induction mirrors the down-regulation of TSH-R mRNA. ICER binds to a CRE-like sequence in the TSH-R promoter and represses its expression. Thus, ICER induction by TSH in the thyroid gland represents a paradigm of the molecular mechanism by which pituitary hormones elicit homologous long-term desensitization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The granulocyte/macrophage colony-stimulating factor (GM-CSF) receptor (GMR) is a heterodimeric receptor expressed by myeloid lineage cells. In this study we have investigated domains of the GMR beta-chain (GMR beta) involved in maintaining cellular viability. Using a series of nested GMR beta deletion mutants, we demonstrate that there are at least two domains of GMR beta that contribute to viability signals. Deletion of amino acid residues 626-763 causes a viability defect that can be rescued with fetal calf serum (FCS). Deletion of residues 518-626, in contrast, causes a further decrement in viability that can be only partially compensated by the addition of FCS. GMR beta truncated proximal to amino acid 517 will not support long-term growth under any conditions. Site-directed mutagenesis of tyrosine-750 (Y750), which is contained within the distal viability domain, to phenylalanine eliminates all demonstrable tyrosine phosphorylation of GMR beta. Cell lines transfected with mutant GMR beta (Y750-->F) have a viability disadvantage when compared to cell lines containing wild-type GMR that is partially rescued by the addition of FCS. We studied signal transduction in mutant cell lines in an effort to identify pathways that might participate in the viability signal. Although tyrosine phosphorylation of JAK2, SHPTP2, and Vav is intact in Y750-->F mutant cell lines, Shc tyrosine phosphorylation is reduced. This suggests a potential role for Y750 and potentially Shc in a GM-CSF-induced signaling pathway that helps maintain cellular viability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interleukin 2 receptor (IL-2R) consists of three subunits, the IL-2R alpha, IL-2R beta c, and IL-2R gamma c chains. Two Janus family protein tyrosine kinases (PTKs), Jak1 and Jak3, were shown to associate with IL-2R beta c and IL-2R gamma c, respectively, and their PTK activities are increased after IL-2 stimulation. A Jak3 mutant with truncation of the C-terminal PTK domain lacks its intrinsic kinase activity but can still associate with IL-2R gamma c. In a hematopoietic cell line, F7, that responds to either IL-2 or IL-3, overexpression of this Jak3 mutant results in selective inhibition of the IL-2-induced activation of Jak1/Jak3 PTKs and of cell proliferation. Of the three target nuclear protooncogenes of the IL-2 signaling, c-fos and c-myc genes, but not the bcl-2 gene, were found to be impaired. On the other hand, overexpression of the dominant negative form of the IL-2R gamma c chain, which lacks most of its cytoplasmic domain, in F7 cells resulted in the inhibition of all three protooncogenes. These results provide a further molecular basis for the critical role of Jak3 in IL-2 signaling and also suggest a Jak PTK-independent signaling pathway(s) for the bcl-2 gene induction by IL-2R.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dorsoventral axis is established early in Xenopus development and may involve signaling by Wnts, a family of Wnt1-protooncogene-related proteins. The protein kinase shaggy functions in the wingless/Wnt signaling pathway, which operates during Drosophila development. To assess the role of a closely related kinase, glycogen synthase kinase 3 beta (GSK-3 beta), in vertebrate embryogenesis, we cloned a cDNA encoding a Xenopus homolog of GSK-3 beta (XGSK-3 beta). XGSK-3 beta-specific transcripts were detected by Northern analysis in Xenopus eggs and early embryos. Microinjection of the mRNA encoding a catalytically inactive form of rat GSK-3 beta into a ventrovegetal blastomere of eight-cell embryos caused ectopic formation of a secondary body axis containing a complete set of dorsal and anterior structures. Furthermore, in isolated ectodermal explants, the mutant GSK-3 beta mRNA activated the expression of neural tissue markers. Wild-type XGSK-3 beta mRNA suppressed the dorsalizing effects of both the mutated GSK-3 beta and Xenopus dishevelled, a proposed upstream signaling component of the same pathway. These results strongly suggest that XGSK-3 beta functions to inhibit dorsoventral axis formation in the embryo and provide evidence for conservation of the Wnt signaling pathway in Drosophila and vertebrates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

She is a widely expressed adapter protein that plays an important role in signaling via a variety of cell surface receptors and has been implicated in coupling the stimulation of growth factor, cytokine, and antigen receptors to the Ras signaling pathway. She interacts with several tyrosine-phosphorylated receptors through its C-terminal SH2 domain, and one of the mechanisms of T-cell receptor-mediated Ras activation involves the interaction of the Shc SH2 domain with the tyrosine-phosphorylated zeta chain of the T-cell receptor. Here we describe a high-resolution NMR structure of the Shc SH2 domain complexed to a phosphopeptide (GHDGLpYQGLSTATK) corresponding to a portion of the zeta chain of the T-cell receptor. Although the overall architecture of the protein is similar to other SH2 domains, distinct structural differences were observed in the smaller beta-sheet, BG loop, (pY + 3) phosphopeptide-binding site, and relative position of the bound phosphopeptide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interleukin 4 (IL-4) signaling pathway involves activation, by tyrosine phosphorylation, of two distinct substrates, a signal-transducing factor (STF-IL4) and the IL-4-induced phosphotyrosine substrate (4PS). It is not known whether the IL-4-mediated activation of these substrates occurs via related or distinct signaling pathways. We report that 32D cells, an IL-3-dependent myeloid progenitor cell line in which no phosphorylated 4PS is found, activate high levels of STF-IL4 in response to IL-4. Consistent with the known requirement for 4PS or insulin receptor substrate 1 (IRS-1) in IL-4-mediated mitogenesis, activation of STF-IL4 in 32D cells is not sufficient for IL-4-inducible c-myc expression. In addition, we have examined the ability of 32D cells transfected with different truncation mutants of the human IL-4 receptor to activate Jak-3 kinase and STF-IL4 in response to human IL-4. As in the case of 4PS/IRS-1, we have found that activation of both Jak-3 and STF-IL4 requires the presence of the IL-4 receptor region comprising aa 437-557. The finding that the same region of the IL-4 receptor is required for the induction of both 4PS/IRS-1 and STF-IL4 suggests that the IL-4-stimulated activation of these two substrates might involve common factors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have recently characterized a cardiac model of ventricular chamber defects in retinoid X receptor alpha (RXR alpha) homozygous mutant (-/-) gene-targeted mice. These mice display generalized edema, ventricular chamber hypoplasia, and muscular septal defects, and they die at embryonic day 15. To substantiate our hypothesis that the embryos are dying of cardiac pump failure, we have used digital bright-field and fluorescent video microscopy and in vivo microinjection of fluorescein-labeled albumin to analyze cardiac function. The affected embryos showed depressed ventricular function (average left ventricular area ejection fraction, 14%), ventricular septal defects, and various degrees of atrioventricular block not seen in the RXR alpha wild-type (+/+) and heterozygous (+/-) littermates (average left ventricular area ejection fraction, 50%). The molecular mechanisms involved in these ventricular defects were studied by evaluating expression of cardiac-specific genes known to be developmentally regulated. By in situ hybridization, aberrant, persistent expression of the atrial isoform of myosin light chain 2 was identified in the ventricles. We hypothesize that retinoic acid provides a critical signal mediated through the RXR alpha pathway that is required to allow progression of development of the ventricular region of the heart from its early atrial-like form to the thick-walled adult ventricle. The conduction system disturbances found in the RXR alpha -/- embryos may reflect a requirement of the developing conduction system for the RXR alpha signaling pathway, or it may be secondary to the failure of septal development.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The enzyme collagenase (EC 3.4.24.7), a key mediator in biological remodeling, can be induced in early-passage fibroblasts by a wide variety of agents and conditions. In contrast, at least some primary tissue fibroblasts are incompetent to synthesize collagenase in response to many of these stimulators. In this study, we investigate mechanisms controlling response to two of the conditions in question: (i) trypsin or cytochalasin B, which disrupt actin stress fibers, or (ii) phorbol 12-myristate 13-acetate (PMA), which activates growth factor signaling pathways. We demonstrate that collagenase expression stimulated by trypsin or cytochalasin B is regulated entirely through an autocrine cytokine, interleukin 1 alpha (IL-1 alpha). The IL-1 alpha intermediate also constitutes the major mechanism by which PMA stimulates collagenase expression, although a second signaling pathway(s) contributes to a minor extent. Elevation of the IL-1 alpha level in response to stimulators is found to be sustained by means of an autocrine feedback loop in early-passage fibroblast cultures. In contrast, fibroblasts freshly isolated from the tissue are incompetent to activate and sustain the IL-1 alpha feedback loop, even though they synthesize collagenase in response to exogenous IL-1. We conclude that this is the reason why tissue fibroblasts are limited, in comparison with subcultured fibroblasts, in their capacity to synthesize collagenase. Activation of the IL-1 alpha feedback loop, therefore, seems likely to be an important mechanism by which resident tissue cells adopt the remodeling phenotype.