985 resultados para Signal-dependent experimentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Thy-1 is an abundant neuronal glycoprotein in mammals. Despite such prevalence, Thy-1 function remains largely obscure in the absence of a defined ligand. Astrocytes, ubiquitous cells of the brain, express a putative Thy-1 ligand that prevents neurite outgrowth. In this paper, a ligand molecule for Thy-1 was identified, and the consequences of Thy-1 binding for astrocyte function were investigated. RESULTS: Thy-1 has been implicated in cell adhesion and, indeed, all known Thy-1 sequences were found to contain an integrin binding, RGD-like sequence. Thy-1 interaction with beta3 integrin on astrocytes was demonstrated in an adhesion assay using a thymoma line (EL-4) expressing high levels of Thy-1. EL-4 cells bound to astrocytes five times more readily than EL-4(-f), control cells lacking Thy-1. Binding was blocked by either anti-Thy-1 or anti-beta3 antibodies, by RGD-related peptides, or by soluble Thy-1-Fc chimeras. However, neither RGE/RLE peptides nor Thy-1(RLE)-Fc fusion protein inhibited the interaction. Immobilized Thy-1-Fc, but not Thy-1(RLE)-Fc fusion protein supported the attachment and spreading of astrocytes in a Mn(2+)-dependent manner. Binding to Thy-1-Fc was inhibited by RGD peptides. Moreover, vitronectin, fibrinogen, denatured collagen (dcollagen), and a kistrin-derived peptide, but not fibronectin, also mediated Mn(2+)-dependent adhesion, suggesting the involvement of beta3 integrin. The addition of Thy-1 to matrix-bound astrocytes induced recruitment of paxillin, vinculin, and focal adhesion kinase (FAK) to focal contacts and increased tyrosine phosphorylation of proteins such as p130(Cas) and FAK. Furthermore, astrocyte binding to immobilized Thy-1-Fc alone was sufficient to promote focal adhesion formation and phosphorylation on tyrosine. CONCLUSIONS: Thy-1 binds to beta3 integrin and triggers tyrosine phosphorylation of focal adhesion proteins in astrocytes, thereby promoting focal adhesion formation, cell attachment, and spreading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell invasion targets specific tissues in physiological placental implantation and pathological metastasis, which raises questions about how this process is controlled. We compare dermis and endometrium capacities to support trophoblast invasion, using matching sets of human primary fibroblasts in a coculture assay with human placental explants. Substituting endometrium, the natural trophoblast target, with dermis dramatically reduces trophoblast interstitial invasion. Our data reveal that endometrium expresses a higher rate of the fibronectin (FN) extra type III domain A+ (EDA+) splicing isoform, which displays stronger matrix incorporation capacity. We demonstrate that the high FN content of the endometrium matrix, and not specifically the EDA domain, supports trophoblast invasion by showing that forced incorporation of plasma FN (EDA-) promotes efficient trophoblast invasion. We further show that the serine/arginine-rich protein serine/arginine-rich splicing factor 1 (SRSF1) is more highly expressed in endometrium and, using RNA interference, that it is involved in the higher EDA exon inclusion rate in endometrium. Our data therefore show a mechanism by which tissues can be distinguished, for their capacity to support invasion, by their different rates of EDA inclusion, linked to their SRSF1 protein levels. In the broader context of cancer pathology, the results suggest that SRSF1 might play a central role not only in the tumor cells, but also in the surrounding stroma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Social phobia is among the most frequent psychiatric disorders and can be classified into two subtypes, nongeneralized and generalized. Whereas it significantly worsens the morbidity of comorbid substance abuse disorders, and it often is associated with reduced treatment responses, there is still lacking data on its prevalence in clinical populations of drug abusing patients. METHODS: The study sample consisted of 75 inpatients and 75 outpatients meeting DSM-IV criteria for drug dependence. Symptoms of social phobia were assessed with the French-language version of the Liebowitz Social Anxiety Scale (LSAS). RESULTS: Prevalence rate were 20% for the generalized subtype and 42.6% for the nongeneralized subtype. Gender difference emerged in the severity of fear, women reporting significantly greater fear relating to performance situations than men. CONCLUSIONS: An important proportion of patients with substance dependence present a comorbid generalized or nongeneralized social phobia. Early recognition of social phobia and adequate interventions is warranted for these patients in order to improve their treatment response with regard to quality of life and relapse prevention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The representation of the human body in the human cerebellum is still relatively unknown, compared to the well-studied homunculus in the primary somatosensory cortex. The investigation of the body representation in the cerebellum and its somatotopic organisation is complicated because of the relatively small dimensions of the cerebellum, compared to the cerebrum. Somatotopically organised whole-body homunculi have previously been reported in both humans and rats. However, whether individual digits are represented in the cerebellum in a somatotopically organised way is much less clear. In this study, the high spatial resolution and high sensitivity to the blood oxygenation level dependent (BOLD) signal of 7T fMRI were employed to study the BOLD responses in the human cerebellum to the stroking of the skin of individual digits, the hand and forearm. For the first time, a coarse somatotopic organisation of the digits, ordered from D1-D5, could be visualised in individual human subjects in both the anterior (lobule V) and the posterior (lobule VIII) lobes of the cerebellum using a somatosensory stimulus. The somatotopic gradient in lobule V was found consistently in the posterior to anterior direction, with the thumb most posterior, while the direction of the somatotopic gradient in lobule VIII differed between subjects. No somatotopic organisation was found in Crus I. A comparison of the digit patches with the hand patch revealed that the digit regions are completely covered by the hand region in both the anterior and posterior lobes of the cerebellum, in a non-somatotopic manner. These results demonstrate the promise of ultra-high field, high-resolution fMRI for studies of the cerebellum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trypanosoma cruzi, the protozoan responsible for Chagas disease, employs distinct strategies to invade mammalian host cells. In the present work we investigated the participation of calcium ions on the invasion process using primary cultures of embryonic mice cardiomyocytes which exhibit spontaneous contraction in vitro. Using Fura 2-AM we found that T. cruzi was able to induce a sustained increase in basal intracellular Ca2+ level in heart muscle cells (HMC), the response being associated or not with Ca2+ transient peaks. Assays performed with both Y and CL strains indicated that the changes in intracellular Ca2+ started after parasites contacted with the cardiomyocytes and the evoked response was higher than the Ca2+ signal associated to the spontaneous contractions. The possible role of the extracellular and intracellular Ca2+ levels on T. cruzi invasion process was evaluated using the extracellular Ca2+ chelator EGTA alone or in association with the calcium ionophore A23187. Significant dose dependent inhibition of the invasion levels were found when intracellular calcium release was prevented by the association of EGTA +A23187 in calcium free medium. Dose response experiments indicated that EGTA 2.5 mM to 5 mM decreased the invasion level by 15.2 to 35.1% while A23187 (0.5 µM) alone did not induce significant effects (17%); treatment of the cultures with the protease inhibitor leupeptin did not affect the endocytic index, thus arguing against the involvement of leupeptin sensitive proteases in the invasion of HMC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there are some data concerning the nitric oxide and the cyclic 3'-5'guanosine monophosphate (cGMP) signaling pathway in trypanosomatids, there is no report about the cGMP-dependent enzymatic activity identification. In this sense, a cGMP dependent activity was detected on soluble fraction from Leishmania amazonensis promastigotes with a high metacyclic level. This information is valuable in order to explore the metabolic pathway of G kinase protein in this parasite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have previously reported (Dobreva, I., Waeber, G., Mooser, V., James, R. W., and Widmann, C. (2003) J. Lipid Res. 44, 2382-2390) that low density lipoproteins (LDLs) induce activation of the p38 MAPK pathway, resulting in fibroblast spreading and lamellipodia formation. Here, we show that LDL-stimulated fibroblast spreading and wound sealing are due to secretion of a soluble factor. Using an antibody-based human protein array, interleukin-8 (IL-8) was identified as the main cytokine whose concentration was increased in supernatants from LDL-stimulated cells. Incubation of supernatants from LDL-treated cells with an anti-IL-8 blocking antibody completely abolished their ability to induce cell spreading and mediate wound closure. In addition, fibroblasts treated with recombinant IL-8 spread to the same extent as cells incubated with LDL or supernatants from LDL-treated cells. The ability of LDL and IL-8 to induce fibroblast spreading was mediated by the IL-8 receptor type II (CXCR-2). Furthermore, LDL-induced IL-8 production and subsequent wound closure required the activation of the p38 MAPK pathway, because both processes were abrogated by a specific p38 inhibitor. Therefore, the capacity of LDLs to induce fibroblast spreading and accelerate wound closure relies on their ability to stimulate IL-8 secretion in a p38 MAPK-dependent manner. Regulation of fibroblast shape and migration by lipoproteins may be relevant to atherosclerosis that is characterized by increased LDL cholesterol levels, IL-8 production, and extensive remodeling of the vessel wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 μs and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION. Reduced cerebral perfusion pressure (CPP) may worsen secondary damage and outcome after severe traumatic brain injury (TBI), however the optimal management of CPP is still debated. STUDY HYPOTHESIS: We hypothesized that the impact of CPP on outcome is related to brain tissue oxygen tension (PbtO2) level and that reduced CPP may worsen TBI prognosis when it is associated with brain hypoxia. DESIGN. Retrospective analysis of prospective database. METHODS. We analyzed 103 patients with severe TBI who underwent continuous PbtO2 and CPP monitoring for an average of 5 days. For each patient, duration of reduced CPP (\60 mm Hg) and brain hypoxia (PbtO2\15 mm Hg for[30 min [1]) was calculated with linear interpolation method and the relationship between CPP and PbtO2 was analyzed with Pearson's linear correlation coefficient. Outcome at 30 days was assessed with the Glasgow Outcome Score (GOS), dichotomized as good (GOS 4-5) versus poor (GOS 1-3). Multivariable associations with outcome were analyzed with stepwise forward logistic regression. RESULTS. Reduced CPP (n=790 episodes; mean duration 10.2 ± 12.3 h) was observed in 75 (74%) patients and was frequently associated with brain hypoxia (46/75; 61%). Episodes where reduced CPP were associated with normal brain oxygen did not differ significantly between patients with poor versus those with good outcome (8.2 ± 8.3 vs. 6.5 ± 9.7 h; P=0.35). In contrast, time where reduced CPP occurred simultaneously with brain hypoxia was longer in patients with poor than in those with good outcome (3.3±7.4 vs. 0.8±2.3 h; P=0.02). Outcome was significantly worse in patients who had both reduced CPP and brain hypoxia (61% had GOS 1-3 vs. 17% in those with reduced CPP but no brain hypoxia; P\0.01). Patients in whom a positive CPP-PbtO2 correlation (r[0.3) was found also were more likely to have poor outcome (69 vs. 31% in patients with no CPP-PbtO2 correlation; P\0.01). Brain hypoxia was an independent risk factor of poor prognosis (odds ratio for favorable outcome of 0.89 [95% CI 0.79-1.00] per hour spent with a PbtO2\15 mm Hg; P=0.05, adjusted for CPP, age, GCS, Marshall CT and APACHE II). CONCLUSIONS. Low CPP may significantly worsen outcome after severe TBI when it is associated with brain tissue hypoxia. PbtO2-targeted management of CPP may optimize TBI therapy and improve outcome of head-injured patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The two incretins, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are insulinotropic factors released from the small intestine to the blood stream in response to oral glucose ingestion. The insulinotropic effect of GLP-1 is maintained in patients with Type II (non-insulin-dependent) diabetes mellitus, whereas, for unknown reasons, the effect of GIP is diminished or lacking. We defined the exon-intron boundaries of the human GIP receptor, made a mutational analysis of the gene and identified two amino acid substitutions, A207 V and E354Q. In an association study of 227 Caucasian Type II diabetic patients and 224 matched glucose tolerant control subjects, the allelic frequency of the A207 V polymorphism was 1.1% in Type II diabetic patients and 0.7% in control subjects (p = 0.48), whereas the allelic frequency of the codon 354 polymorphism was 24.9% in Type II diabetic patients versus 23.2% in control subjects. Interestingly, the glucose tolerant subjects (6% of the population) who were homozygous for the codon 354 variant had on average a 14% decrease in fasting serum C-peptide concentration (p = 0.01) and an 11% decrease in the same variable 30 min after an oral glucose load (p = 0.03) compared with subjects with the wild-type receptor. Investigation of the function of the two GIP receptor variants in Chinese hamster fibroblasts showed, however, that the GIP-induced cAMP formation and the binding of GIP to cells expressing the variant receptors were not different from the findings in cells expressing the wildtype GIP receptor. In conclusion, amino acid variants in the GIP receptor are not associated with random Type II diabetes in patients of Danish Caucasian origin or with altered GIP binding and GIP-induced cAMP production when stably transfected in Chinese hamster fibroblasts. The finding of an association between homozygosity for the codon 354 variant and reduced fasting and post oral glucose tolerance test (OGTT) serum C-peptide concentrations, however, calls for further investigations and could suggest that GIP even in the fasting state regulates the beta-cell secretory response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Division of labour is one of the most prominent features of social insects. The efficient allocation of individuals to different tasks requires dynamic adjustment in response to environmental perturbations. Theoretical models suggest that the colony-level flexibility in responding to external changes and internal perturbation may depend on the within-colony genetic diversity, which is affected by the number of breeding individuals. However, these models have not considered the genetic architecture underlying the propensity of workers to perform the various tasks. Here, we investigated how both within-colony genetic variability (stemming from variation in the number of matings by queens) and the number of genes influencing the stimulus (threshold) for a given task at which workers begin to perform that task jointly influence task allocation efficiency. We used a numerical agent-based model to investigate the situation where workers had to perform either a regulatory task or a foraging task. One hundred generations of artificial selection in populations consisting of 500 colonies revealed that an increased number of matings always improved colony performance, whatever the number of loci encoding the thresholds of the regulatory and foraging tasks. However, the beneficial effect of additional matings was particularly important when the genetic architecture of queens comprised one or a few genes for the foraging task's threshold. By contrast, a higher number of genes encoding the foraging task reduced colony performance with the detrimental effect being stronger when queens had mated with several males. Finally, the number of genes encoding the threshold for the regulatory task only had a minor effect on colony performance. Overall, our numerical experiments support the importance of mating frequency on efficiency of division of labour and also reveal complex interactions between the number of matings and genetic architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wounding in multicellular eukaryotes results in marked changes in gene expression that contribute to tissue defense and repair. Using a cDNA microarray technique, we analyzed the timing, dynamics, and regulation of the expression of 150 genes in mechanically wounded leaves of Arabidopsis. Temporal accumulation of a group of transcripts was correlated with the appearance of oxylipin signals of the jasmonate family. Analysis of the coronatine-insensitive coi1-1 Arabidopsis mutant that is also insensitive to jasmonate allowed us to identify a large number of COI1-dependent and COI1-independent wound-inducible genes. Water stress was found to contribute to the regulation of an unexpectedly large fraction of these genes. Comparing the results of mechanical wounding with damage by feeding larvae of the cabbage butterfly (Pieris rapae) resulted in very different transcript profiles. One gene was specifically induced by insect feeding but not by wounding; moreover, there was a relative lack of water stress-induced gene expression during insect feeding. These results help reveal a feeding strategy of P. rapae that may minimize the activation of a subset of water stress-inducible, defense-related genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive proliferation of vascular wall cells underlies the development of elevated vascular resistance in hypoxic pulmonary hypertension (PH), but the responsible mechanisms remain unclear. Growth-promoting effects of catecholamines may contribute. Hypoxemia causes sympathoexcitation, and prolonged stimulation of alpha(1)-adrenoceptors (alpha(1)-ARs) induces hypertrophy and hyperplasia of arterial smooth muscle cells and adventitial fibroblasts. Catecholamine trophic actions in arteries are enhanced when other conditions favoring growth or remodeling are present, e.g., injury or altered shear stress, in isolated pulmonary arteries from rats with hypoxic PH. The present study examined the hypothesis that catecholamines contribute to pulmonary vascular remodeling in vivo in hypoxic PH. Mice genetically deficient in norepinephrine and epinephrine production [dopamine beta-hydroxylase(-/-) (DBH(-/-))] or alpha(1)-ARs were examined for alterations in PH, cardiac hypertrophy, and vascular remodeling after 21 days exposure to normobaric 0.1 inspired oxygen fraction (Fi(O(2))). A decrease in the lumen area and an increase in the wall thickness of arteries were strongly inhibited in knockout mice (order of extent of inhibition: DBH(-/-) = alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-)). Distal muscularization of small arterioles was also reduced (DBH(-/-) > alpha(1D)-AR(-/-) > alpha(1B)-AR(-/-) mice). Despite these reductions, increases in right ventricular pressure and hypertrophy were not attenuated in DBH(-/-) and alpha(1B)-AR(-/-) mice. However, hematocrit increased more in these mice, possibly as a consequence of impaired cardiovascular activation that occurs during reduction of Fi(O(2)). In contrast, in alpha(1D)-AR(-/-) mice, where hematocrit increased the same as in wild-type mice, right ventricular pressure was reduced. These data suggest that catecholamine stimulation of alpha(1B)- and alpha(1D)-ARs contributes significantly to vascular remodeling in hypoxic PH.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Colostrum feeding and glucocorticoid administration affect glucose metabolism and insulin release in calves. We have tested the hypothesis that dexamethasone as well as colostrum feeding influence insulin-dependent glucose metabolism in neonatal calves using the euglycemic-hyperinsulinemic clamp technique. Newborn calves were fed either colostrum or a milk-based formula (n=14 per group) and in each feeding group, half of the calves were treated with dexamethasone (30 microg/[kg body weight per day]). Preprandial blood samples were taken on days 1, 2, and 4. On day 5, insulin was infused for 3h and plasma glucose concentrations were kept at 5 mmol/L+/-10%. Clamps were combined with [(13)C]-bicarbonate and [6,6-(2)H]-glucose infusions for 5.5h (i.e., from -150 to 180 min, relative to insulin infusion) to determine glucose turnover, glucose appearance rate (Ra), endogenous glucose production (eGP), and gluconeogenesis before and at the end of the clamp. After the clamp liver biopsies were taken to measure mRNA levels of phosphoenolpyruvate carboxykinase (PEPCK) and pyruvate carboxylase (PC). Dexamethasone increased plasma glucose, insulin, and glucagon concentrations in the pre-clamp period thus necessitating a reduction in the rate of glucose infusion to maintain euglycemia during the clamp. Glucose turnover and Ra increased during the clamp and were lower at the end of the clamp in dexamethasone-treated calves. Dexamethasone treatment did not affect basal gluconeogenesis or eGP. At the end of the clamp, dexamethasone reduced eGP and PC mRNA levels, whereas mitochondrial PEPCK mRNA levels increased. In conclusion, insulin increased glucose turnover and dexamethasone impaired insulin-dependent glucose metabolism, and this was independent of different feeding.