856 resultados para Shale oils
Resumo:
O presente estudo versa sobre os fatores tecnológicos e ambientais que vêm resultando no crescimento da produção de gás natural não convencional nos EUA. Os objetos de analise principais serão as políticas públicas, assim como a dinâmica entre os atores sociais e o ambiente propício que fora criado para que houvesse o adensamento do fomento e do estímulo às inovações tecnológicas sucedidas no setor.
Resumo:
Este estudo objetivou identificar os stakeholders que influenciam a agenda do gás de xisto no parlamento brasileiro. A pesquisa teve uma abordagem qualitativa, uma vez que não houve preocupação com os números e sim com a percepção dos entrevistados. Além disso, os dados coletados na pesquisa de campo foram interpretados e alinhados com o referencial teórico desse trabalho. Quanto à metodologia, foi classificada como exploratória, uma vez que ainda há pouco conhecimento sobre a influência de grupos de interesse no Congresso Nacional, do tipo pesquisa de campo e de estudo de caso por se tratar especificamente da exploração do gás de xisto. A coleta de dados foi feita por meio de entrevistas e da aplicação de questionário com um roteiro previamente estabelecido. Após a análise dos dados, concluiu-se que há duas correntes que atuam na agenda do gás de xisto. A primeira tem um posicionamento que preza pela precaução, ou seja, é necessário que se descubra os impactos da exploração da atividade no meio ambiente antes que se decida iniciar a exploração e a produção do gás de xisto. A segunda corrente defende a exploração desse gás não convencional como forma de reduzir os custos de produção e aumentar a competitividade do país. Foram identificados 39 stakeholders que influenciam o andamento do Projeto de Lei 6904/2013, que suspende a autorização e a exploração do gás de xisto por um período de cinco anos. Isso mostra que os grupos de interesse, uns mais poderosos que outros, têm papel importante na formulação de políticas públicas e, através do lobby, buscam influenciar os tomadores de decisão de acordo com os seus objetivos.
Resumo:
How have shocks to supply and demand affected global oil prices; and what are key policy implications following the resurgence of oil production in the United States? Highlights: − The recent collapse in global oil prices was dominated by oversupply. − The future of tight oil in the United States is vulnerable to obstacles beyond oil prices. − Opinions on tight oil from the Top 25 think tank organizations are considered. Global oil prices have fallen more than fifty percent since mid-2014. While price corrections in the global oil markets resulted from multiple factors over the past twelve months, surging tight oil production from the United States was a key driver. Tight oil is considered an unconventional or transitional oil source due to its location in oil-bearing shale instead of conventional oil reservoirs. These qualities make tight oil production fundamentally different from regular crude, posing unique challenges. This case study examines these challenges and explores how shocks to supply and demand affect global oil prices while identifying important policy considerations. Analysis of existing evidence is supported by expert opinions from more than one hundred scholars from top-tier think tank organizations. Finally, implications for United States tight oil production as well as global ramifications of a new low price environment are explored.
Resumo:
A dynamic headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to ion trap mass spectrometry (GC–ITMS) method was developed and applied for the qualitative determination of the volatile compounds present in commercial whisky samples which alcoholic content was previously adjusted to 13% (v/v). Headspace SPME experimental conditions, such as fibre coating, extraction temperature and extraction time, were optimized in order to improve the extraction process. Five different SPME fibres were used in this study, namely, poly(dimethylsiloxane)(PDMS),poly(acrylate)(PA),Carboxen-poly(dimethylsiloxane)(CAR/PDMS),Carbowax-divinylbenzene(CW/DVB)and Carboxen-poly(dimethylsiloxane)-divinylbenzene (CAR/PDMS/DVB). The best results were obtained using a 75 m CAR/PDMS fibre during headspace extraction at 40◦C with stirring at 750rpm for 60min, after saturating the samples with salt. The optimised methodology was then appliedtoinvestigatethevolatilecompositionprofileofthreeScotchwhiskysamples—BlackLabel,BallantinesandHighlandClan.Approximately seventy volatile compounds were identified in the these samples, pertaining at several chemical groups, mainly fatty acids ethyl esters, higher alcohols, fatty acids, carbonyl compounds, monoterpenols, C13 norisoprenoids and some volatile phenols. The ethyl esters form an essential group of aroma components in whisky, to which they confer a pleasant aroma, with “fruity” odours. Qualitatively, the isoamyl acetate, with “banana” aroma,wasthemostinteresting.Quantitatively,significantcomponentsareethylestersofcaprilic,capricandlauricacids.Thehighestconcentration of fatty acids, were observed for caprilic and capric acids. From the higher alcohols the fusel oils (3-methylbutan-1-ol and 2.phenyletanol) are the most important ones.
Resumo:
Untreated effluents that reach surface water affect the aquatic life and humans. This study aimed to evaluate the wastewater s toxicity (municipal, industrial and shrimp pond effluents) released in the Estuarine Complex of Jundiaí- Potengi, Natal/RN, through chronic quantitative e qualitative toxicity tests using the test organism Mysidopsis Juniae, CRUSTACEA, MYSIDACEA (Silva, 1979). For this, a new methodology for viewing chronic effects on organisms of M. juniae was used (only renewal), based on another existing methodology to another testorganism very similar to M. Juniae, the M. Bahia (daily renewal).Toxicity tests 7 days duration were used for detecting effects on the survival and fecundity in M. juniae. Lethal Concentration 50% (LC50%) was determined by the Trimmed Spearman-Karber; Inhibition Concentration 50% (IC50%) in fecundity was determined by Linear Interpolation. ANOVA (One Way) tests (p = 0.05) were used to determinate the No Observed Effect Concentration (NOEC) and Low Observed Effect Concentration (LOEC). Effluents flows were measured and the toxic load of the effluents was estimated. Multivariate analysis - Principal Component Analysis (PCA) and Correspondence Analysis (CA) - identified the physic-chemical parameters better explain the patterns of toxicity found in survival and fecundity of M. juniae. We verified the feasibility of applying the only renewal system in chronic tests with M. Juniae. Most efluentes proved toxic on the survival and fecundity of M. Juniae, except for some shrimp pond effluents. The most toxic effluent was ETE Lagoa Aerada (LC50, 6.24%; IC50, 4.82%), ETE Quintas (LC50, 5.85%), Giselda Trigueiro Hospital (LC50, 2.05%), CLAN (LC50, 2.14%) and COTEMINAS (LC50, IC50 and 38.51%, 6.94%). The greatest toxic load was originated from ETE inefficient high flow effluents, textile effluents and CLAN. The organic load was related to the toxic effects of wastewater and hospital effluents in survival of M. Juniae, as well as heavy metals, total residual chlorine and phenols. In industrial effluents was found relationship between toxicity and organic load, phenols, oils and greases and benzene. The effects on fertility were related, in turn, with chlorine and heavy metals. Toxicity tests using other organisms of different trophic levels, as well as analysis of sediment toxicity are recommended to confirm the patterns found with M. Juniae. However, the results indicate the necessity for implementation and improvement of sewage treatment systems affluent to the Potengi s estuary
Resumo:
Portland-polymers composites are promising candidates to be used as cementing material in Northeastern oil wells of Brazil containing heavy oils submitted to steam injection. In this way, it is necessary to evaluate its degradation in the commonly acidizind agents. In addition, to identify how aggressive are the different hostile environments it is an important contribution on the decision of the acidic systems to be used in. It was investigated the performance of the Portland-polymer composites using powdered polyurethane, aqueous polyurethane, rubber tire residues and a biopolymer, those were reinforced with polished carbon steel SAE 1045 to make the electrochemical measurements. HCl 15,0 %, HCl 6,0 % + HF 1,5 % (soft mud acid), HCl 12,0 % + HF 3,0 % (regular mud acid) and HAc 10 % + HF 1,5 % were used as degrading environment and electrolytes. The more aggressive acid solution to the plain Portland hardened cement paste was the regular mud acid, that showed loss of weight around 23.0 %, followed by the soft mud acid, the showed 11.0 %, 15.0 % HCl with 7,0 % and, at last the 10.0 % HAc plus HF 1.5 % with just 1.0 %. The powdered polyurethane-composite and the aqueous polyurethane one showed larger durability, with reduction around 87.0 % on the loss of weight in regular mud acid. The acid attack is superficial and it occurs as an action layer, where the degraded layer is responsible for the decrease on the kinetic of the degrading process. This behavior can be seen mainly on the Portland- aqueous polyurethane composite, because the degraded layer is impregnated with chemically modified polymer. The fact of the acid attack does not have influence on the compressive strength or fratography of the samples, in a general way, confirms that theory. The mechanism of the efficiency of the Portland-polymers composites subjected to acid attack is due to decreased porosity and permeability related with the plain Portland paste, minor quantity of Ca+2, element preferentially leached to the acidic solution, wave effect and to substitute part of the degrading bulk for the polymeric one. The electrolyte HAc 10 % + HF 1,5 % was the least aggressive one to the external corrosion of the casing, showing open circuit potentials around +250 mV compared to -130 mV to the simulated pore solution to the first 24 hours immersion. This behavior has been performed for two months at least. Similar corrosion rates were showed between both of the electrolytes, around 0.01 μA.cm-2. Total impedance values, insipient arcs and big polarization resistance capacitive arcs on the Nyquist plots, indicating passivity process, confirm its efficiency. In this way, Portlandpolymers composites are possible solutions to be succeed applied to oilwell cementing concomitant submitted to steam injection and acidizing operation and the HAc 10,0 % + HF 1,5 % is the less aggressive solution to the external corrosion of the casing
Resumo:
Biodiesel is a fuel obtained from vegetable oils, such as soy, castorbean, among others. The monoester of fatty acid of these oils have chains with mono, di and tri double connections. The presence of these insaturations are susceptible to oxidization. Antioxidants are substances able to prevent oxidization from oils, fats, fat foods, as well as esters of Alquila( biodiesel). The objective of this work is to summarize a new antioxidant from the Cashew Nut Shell Liquid (CNSL) using the electrolysis technique. A current of 2 amperes was used in a single cell of only one group and two eletrodos of stainless steel 304 in a solution of methanol, together with the eletrolits: acetic acid, sodium chloride and sodium hydroxide, for two hours of agitation. The electrolysis products are characterized by the techniques of cromatography in a thin layer, spectroscopy of infrared and gravimetric analysis. The material was submitted to tests of oxidative stability made by the techniques of spectropy of impendancy and Rancimat (EN 14112). The analyses of characterization suggest that the polimerization of the electrolytic material ocurred. The application results of these materials as antioxidants of soy biodiesel showed that the order of the oxidative stability was obtained by both techniques used
Resumo:
Concern with the environment has lead to an increase in the research for new adsorption techniques, low cost adsorvent materials and with high availability. Many works search the development of higher selectivity modified adsorvents. The Brazil has the second world reserve of oiled shale, because of it, the use of that reject is of great interest. This study has the goal of characterize and analyze the retorted shale, reject of the pirobetuminous shale pyrolysis, and the retorted shale modified through the humid impregnation method, wich the precursors were the metals nitrates ( Cobalt, Nickel and Copper), to the usage has adsorvent materials. The samples were characterized chemically, textually and structurally by the X ray fluorescence (XRF), BET, X ray diffraction (XRD) and scanning electronic microscopy (SEM) techniques. The impregnated samples showed a reduction in the superficial area and in the pore volume when compared with the retorted shale. Besides that, diffractions referred to the impregnated metals where observed in the XRD analysis, wich were the same metals detected in the XRF and SEM analysis. The materials showed homogeneity in it s composition. The results shows that the materials presents adequate adsorption characteristics
Resumo:
The oil production in mature areas can be improved by advanced recovery techniques. In special, steam injection reduces the viscosity of heavy oils, thus improving its flow to surrounding wells. On the other hand, the usually high temperatures and pressures involved in the process may lead to cement cracking, negatively affecting both the mechanical stability and zonal isolation provided by the cement sheath of the well. The addition of plastic materials to the cement is an alternative to prevent this scenario. Composite slurries consisting of Portland cement and a natural biopolymer were studied. Samples containing different contents of biopolymer dispersed in a Portland cement matrix were prepared and evaluated by mechanical and rheological tests in order to assess their behavior according to API (American Petroleum Institute) guidelines. FEM was also applied to map the stress distribution encountered by the cement at bottom bole. The slurries were prepared according to a factorial experiment plan by varying three parameters, i.e., cement age, contents of biopolymer and water-to-cement ratio. The results revealed that the addition of the biopolymer reduced the volume of free water and the setting time of the slurry. In addition, tensile strength, compressive strength and toughness improved by 30% comparing hardened composites to plain Portland slurries. FEM results suggested that the stresses developed at bottomhole may be 10 to 100 times higher than the strength of the cement as evaluated in the lab by unconfined mechanical testing. An alternative approach is proposed to adapt the testing methodology used to evaluate the mechanical behavior of oilwell cement slurries by simulating the confined conditions encountered at bottornhole
Resumo:
Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products
Resumo:
Currently a resource more and more used by the petroleum industry to increase the efficiency of steam flood mechanism is the addition of solvents. The process can be understood as a combination of a thermal method (steam injection) with a miscible method (solvent injection), promoting, thus, the reduction of interfacial tensions and oil viscosity. The use of solvent alone tends to be limited because of its high cost. When co-injected with steam, the vaporized solvent condenses in the cooler regions of the reservoir and mixes with the oil, creating a zone of low viscosity between the steam and the heavy oil. The mobility of the displaced fluid is then improved, resulting in an increase of oil recovery. To better understand this improved oil recovery method, a numerical study of the process was done contemplating the effects of some operational parameters (distance between wells, injection steam rate, kind of solvent and injected solvent volume)on the accumulated production of oil, recovery factor and oil-steam rate. Semisynthetic models were used in this study but reservoir data can be extrapolated for practical applications situations on Potiguar Basin. Simulations were performed in STARS (CMG, 2007.11). It was found that injected solvent volumes increased oil recovery and oil rates. Further the majority of the injected solvent was produced and can be recycled
Resumo:
With the new discoveries of oil and gas, the exploration of fields in various geological basins, imports of other oils and the development of alternative fuels, more and more research labs have evaluated and characterized new types of petroleum and derivatives. Therefore the investment in new techniques and equipment in the samples analysis to determine their physical and chemical properties, their composition, possible contaminants, especification of products, among others, have multiplied in last years, so development of techniques for rapid and efficient characterization is extremely important for a better economic recovery of oil. Based on this context, this work has two main objectives. The first one is to characterize the oil by thermogravimetry coupled with mass spectrometry (TG-MS), and correlate these results with from other types of characterizations data previously informed. The second is to use the technique to develop a methodology to obtain the curve of evaluation of hydrogen sulfide gas in oil. Thus, four samples were analyzed by TG-MS, and X-ray fluorescence spectrometry (XRF). TG results can be used to indicate the nature of oil, its tendency in coke formation, temperatures of distillation and cracking, and other features. It was observed in MS evaluations the behavior of oil main compounds with temperature, the points where the volatilized certain fractions and the evaluation gas analysis of sulfide hydrogen that is compared with the evaluation curve obtained by Petrobras with another methodology
Resumo:
Exploration of heavy oil reservoirs is increasing every year in worldwide, because the discovery of light oil reservoirs is becoming increasingly rare. This fact has stimulated the research with the purpose of becoming viable, technically and economically, the exploration of such oil reserves. In Brazil, in special in the Northeast region, there is a large amount of heavy oil reservoir, where the recovery by the so called secondary methods Water injection or gas injection is inefficient or even impracticable in some reservoirs with high viscosity oils (heavy oils). In this scenario, steam injection appears as an interesting alternative for recover of these kinds of oil reservoirs. Its main mechanism consists of oil viscosity reduction through steam injection, increasing reservoir temperature. This work presents a parametric simulation study of some operational and reservoir variables that had influence on oil recovery in thin reservoirs typically found in Brazilian Northeast Basins, that use the steam injection as improved oil recovery method. To carry out simulations, it was used the commercial software STARS (Steam, Thermal, and Advanced Processes Reservoir Simulator) from CMG (Computer Modeling Group) version 2007.11. Reservoirs variables studied were horizontal permeability, vertical and horizontal permeability ratio, water zone and pay zone thickness ratio, pay zone thickness and thermal conductivity of the rock. Whereas, operational parameters studied were distance between wells and steam injection rate. Results showed that reservoir variables that had more influence on oil recovery were horizontal permeability and water zone and pay zone thickness ratio. In relation to operational variables, results showed that short distances between wells and low steam injection rates improved oil recovery
Resumo:
Produced water is the main effluent linked to the activity of extraction of oil and their caring management is necessary due to the large volume involved, to ensure to minimize the negative impacts of discharges of these waters in the environment. This study aimed to analyze the use of retorted shale, which is a reject from the pyrolysis of pirobituminous shale, as adsorbent for the removal of phenols in produced water. The material was characterized by different techniques (grain sized analysis, thermal analysis, BET, FRX, FT-IR, XRD and SEM), showing the heterogeneity in their composition, showing its potential for the removal of varied compounds, as well as the phenols and their derivatives. For the analysis of the efficiency of the oil shale for the adsorption process, assays of adsorption balance were carried through, and also kinetic studies and dynamics adsorption, in the ETE of the UTPF of Petrobras, in Guamaré-RN. The balance assays shown a bigger conformity with the model of Langmuir and the kinetic model more adjusted to describe the adsorption of phenols in retorted shale was of pseudo-second order. The retorted shale presented a low capacity of adsorption of phenols (1,3mg/g), when related to others conventional adsorbents, however it is enough to the removal of these composites in concentrations presented in the produced water of the UTPF of Guamaré. The assays of dynamics adsorption in field had shown that the concentration of phenol in the effluent was null until reaching its rupture (58 hours). The results showed the possibility of use of the reject for removal of phenols in the final operations of the treatment process, removing as well, satisfactorily, the color and turbidity of the produced water, with more than 90% of removal
Resumo:
The acceleration of industrial growth in recent decades on all continents aroused the interest of the companies to counter the impacts produced on the environment, spurred primarily by major disasters in the petroleum industry. In this context, the water produced is responsible for the largest volume of effluent from the production and extraction of oil and natural gas. This effluent has in its composition some critical components such as inorganic salts, heavy metals (Fe, Cu, Zn, Pb, Cd, ), presence of oil and chemicals added in the various production processes. In response to impact, have been triggered by research alternative adsorbent materials for water treatment and water produced, in order to removing oils and acids and heavy metals. Many surveys of diatomaceous earth (diatomite) in Brazil involve studies on the physico-chemical, mineral deposits, extraction, processing and applications. The official estimated Jazi are around 2.5 million tonnes, the main located in the states of Bahia (44%) and Rio Grande do Norte (37,4%). Moreover, these two states appear as large offshore producers, earning a prominent role in research of adsorbents such as diatomite for treatment of water produced. Its main applications are as an agent of filtration, adsorption of oils and greases, industrial load and thermal insulator. The objective of this work was the processing and characterization of diatomite diatomaceous earth obtained from the municipality of Macaíba-RN (known locally as tabatinga) as a low cost regenerative adsorbent for removal of heavy metals in the application of water produced treatment. In this work we adopted a methodology for batch processing, practiced by small businesses located in producing regions of Brazil. The characterization was made by X-ray diffraction (XRD), scanning electron microscopy (SEM) and specific surface area (BET). Research conducted showed that the improvement process used was effective for small volume production of diatomite concentrated. The diatomite obtained was treated by calcination at temperature of 900 oC for 2 hours, with and without fluxing Na2CO3 (4%), according to optimal results in the literature. Column adsorption experiments were conducted to percolation of the in nature, calcined and calcined fluxing diatomites. Effluent was used as a saline solution containing ions of Cu, Zn, Na, Ca and Mg simulating the composition of produced waters in the state of Rio Grande do Norte, Brazil. The breakthrough curves for simultaneous removal of copper ions and zinc as a result, 84.3% for calcined diatomite and diatomite with 97.3 % for fluxing. The calcined fluxing diatomite was more efficient permeability through the bed and removal of copper and zinc ions. The fresh diatomite had trouble with the permeability through the bed under the conditions tested, compared with the other obtained diatomite. The results are presented as promising for application in the petroleum industry