983 resultados para Shaanxi earthquake


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The unique geologic, geomorphic and climatic conditions of southeast Tibet have made the region to develop the multi-style and frequently occurring geologic hazards, especially the collapses and landslides and debris flows along the section of Ranwu-Lulang in Sichuan-Tibet highway. However, most of those geologic hazards have close relationship with the loose accumulations. That is, the loose accumulations are the main carrier of most geologic hazards. Thereof, the huge-thick accumulations along the highway is regarded as the objective in the thesis to study the geologic background, hazarding model and mitigation methods comprehensively, based on the multi-disciplinary theories and former materials. First of all, in the paper, based on field engineering geologic investigations, the genetic type and the characteristics of spatiotemporal distribution of the huge-thick loose accumulations along the highway, have been analysized from the factors of regional geology and geomorphy and climate, as well as the coupling acting of those factors with inoculation and eruption of the loose accumulations geologic hazards. The huge-thick loose accumulations has complex genetic types and specific regulations of spatiotemporal distribution, closely controlled by the outer environment of the region. The accumulations are composed of earth and boulder, with disorder structure and poor sorting, specific forming environments and depositing conditions. And its physical and mechanic properties are greatly distinguished from rock and common earth inland. When Sichuan-Tibet highway was firstly constructed along the north bank of Purlung Tsangpo River, the huge-thick loose accumulations was cut into many high and steep slopes. Through the survey to the cut-slopes and systematic investigation to their failures, the combination of height and angle of the accumulations slope has been obtained. At the same time, the types of genetic structure of those cut-slopes are also analysized and concluded, as well as their failure models. It is studied in the paper that there are piaster, duality, multielement and complexity types in genetic structure, and rip-dump-repose, rip-shear-slip and weathering-flake types in failure models. Moreover, it is briefly introduced present engineering performance methods and techniques dealing with the deformation and failure of the accumulations cut-slope. It is also suggested that several new techniques of slope enforcement and the method of landslide and rockfall avoiding should be applied. The research of high and steep cut-slope along the highway has broadened the acknowledgement of the combination of cut-slope height and angle. Especially, the dissertation also has made the monographic studies about the geologic background and hazarding models and prevention methods of some classic but difficult accumulations geologic hazards. They are: (1) Research of the engineering geologic background of the 102 landslide group and key problems about the project of tunnel. The 102 landslide group is a famous accumulational one composed of glacial tills and glaciofuvial deposit. The tunnel project is a feasible and optional one which can solve the present plight of “sliding after just harnessing” in the 102 section. Based on the glacial geomorphy and its depositing character, distribution of seepage line, a few drillhole materials and some surveying data, the position of contact surface between gneiss and accumulations has been recognized, and the retreating velocities of three different time scales (short, medium and long term) have been approximately calculated, and the weathering thickness of gneiss has also been estimated in the paper. On the basis of above acknowledgement, new engineering geomechnic mode is established. Numerical analysis about the stability of the No.2 landslide is done by way of FLAC program, which supplies the conclusion that the landslide there develops periodically. Thereof, 4 projects of tunnel going through the landslide have been put forwards. Safety distance of the tunnel from clinohefron has been numerically analysized. (2) Research of the geologic setting and disaster model and hazard mitigation of sliding-sand-slope. From the geologic setting of talus cone, it is indicated that the sliding-sand-slope is the process of the re-transportation and re-deposit of sand under the gravity action and from the talus cone. It is the failure of the talus cone essentially. The layering structure of the sliding-sand-slope is discovered. The models of movement and failure of the sliding-sand-slope has been put forwards. The technique, “abamurus+grass-bush fence+degradable culture pan”, is suggested to enforcement and green the sliding-sand-slope. (3) Characteristics and hazarding model and disaster mitigation of debris flow. The sources of solid material of three oversize debris flows have been analysized. It is found that a large amount of moraine existing in the glacial valley and large landslide dam-break are the two important features for oversize debris flow to be taken place. The disaster models of oversize and common debris flows have been generalized respectively. The former model better interpret the event of the Yigong super-large landslide-dam breaking. The features of common debris flow along the highway section, scouring and silting and burying and impacting, are formulated carefully. It is suggested that check dam is a better engineering structure to prevent valley from steeply scouring by debris flow. Moreover, the function of check dam in enforcing the slope is numerically calculated by FLAC program. (4) Songzong ancient ice-dammed lake and its slope stability. The lacustrine profile in Songzong landslide, more than 88 meters thick, is carefully described and measured. The Optical Simulated Luminescence (OSL) ages in the bottom and top of the silty clay layer are 22.5±3.3 kaB.P., 16.1±1.7 kaB.P., respectively. It is indicated by the ages that the lacustrine deposits formed during the Last Glacial Maximum ranging from 25ka B.P. to 15ka B.P. The special characteristics of the lacustrine sediment and the ancient lake line in Songzong basin indicated that the lacustrine sediment is related to the blocking of the Purlung Tsangpo River by the glacier in Last Glacial Maximum from Dongqu valley. The characteristics of the lacustrine profile also indicate that the Songzong ice-dammed lake might run through the Last Glacial Maximum. Two dimensional numerical modeling and analysis are done to simulate the slope stability under the conditions of nature and earthquake by FLAC program. The factor of safety of the lacusrtine slope is 1.04, but it will take place horizontal flow under earthquake activity due to the liquefaction of the 18.33 m silt layer. The realign to prevent the road from landslide is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Tien Shan is the most prominent intracontinental mountain belt on the earth. The active crustal deformation and earthquake activities provide an excellent place to study the continental geodynamics of intracontinental mountain belt. The studies of deep structures in crust and upper mantle are significantly meaningful for understanding the geological evolution and geodynamics of global intracontinental mountain belts. This dissertation focuses on the deep structures and geodynamics in the crust and upper mantle in the Tien Shan mountain belt. With the arrival time data from permanent and temporal seismic stations located in the western and central Tien Shan, using seismic travel time tomographic method, we inversed the P-wave velocity and Vp/Vs structures in the crust and uppermost mantle, the Pn and Sn velocities and Pn anisotropic structures in the uppermost mantle, and the P-wave velocity structures in the crust and mantle deep to 690km depth beneath the Tien Shan. The tomographic results suggest that the deep structures and geodynamics have significant impacts not only on the deformations and earthquake activities in the crust, but also on the mountain building, collision, and dynamics of the whole Tien Shan mountain belt. With the strongly collision and deformations in the crust, the 3-D P-wave velocity and Vp/Vs ratio structures are highly complex. The Pn and Sn velocities in the uppermost mantle beneath the Tien Shan, specially beneath the central Tien Shan, are significantly lower than the seismic wavespeed beneath geological stable regions. We infer that the hot upper mantle from the small-scale convection could elevate the temperature in the lower crust and uppermost mantle, and partially melt the materials in the lower crust. The observations of low P-wave and S-wave velocities, high Vp/Vs ratios near the Moho and the absences of earthquake activities in the lower crust are consistent with this inference. Based on teleseismic tomography images of the upper mantle beneath the Tien Shan, we infer that the lithosphere beneath the Tarim basin has subducted under the Tien Shan to depths as great as 500 km. The lithosphere beneath the Kazakh shield may have subducted to similar depths in the opposite direction, but the limited resolution of this data set makes this inference less certain. These images support the plate boundary model of converge for the Tien Shan, as the lithospheres to the north and south of the range both appear to behave as plates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stress change is one of key factors in seismic nucleating and triggering; therefore for understanding and forecasting earthquakes, it is necessary to research on stress status and its changes in rocks. Propagating in underground structures, wave velocity and attenuation contain information on stress changes of the Earth’s interior. For a better understanding of relationship between seismic data and stress changes, modeling and ultrasonic test supply significant references. In this article, acoustoelastic theory is introduced to explain nonlinear elastic characteristics of rocks. Based on the acoustoelastic theory, a solid-fluid coupled model is given to calculate velocity under different stress for porous and liquid fulfilled rocks. Except for the stress-velocity relationship, effects of pore pressure induced stress changes on ultrasonic coda attenuation are also studied. Intrinsic attenuation quality factors are calculated for a comparison purpose. Finally, the relationship between elastic constants and stress changes is thoroughly investigated, a mixture model from two phases of Hooke media is introduced to explain the differences between dynamic and static moduli, a relation among wave length, wave velocities and elastic moduli considering dimension of microstructure, dimension and state of surface between phases is presented. The most important aspect of this work is exploring and establishing relationships between the seismic properties of rocks and changes of their stress conditions, which will have its application in earthquake forecast and seismic hazard.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract: Hejiaji area lies on eastern part of Shanbei Slope in Ordos Basin and the primary oil-bearing bed is Chang 4+5 and Chang 6 of Yanchang Formation. It is indicated that the sedimentary facies and reservoir characteristics restricted the hydrocarbon accumulation regularity by the geological information. Therefore, Applied with outcrop observation,core description, geophysical logging interpretation, thin section determination, Scanning Electron Microscope, reservoir lithology and physical property analysis and other analytic machinery, the sedimentary facies ,micro-characteristic and master control factors on hydrocarbon reservoir of Yanchang Formation in Hejiaji area are studied deeply by means of sedimentology,reservoir geology and petroleum geology and provide a reliably reference for later prospect . Delta facies are identified in Hejiaji area and of which distributary channels in delta plain microfacies controlled the distribution of sand bodies and accumulation of oil and gas.The distribution of sand bodies distributed from northeast to southwest are dominated by sedimentary facies . It was shown that the sandstones are medium to granule arkose,which the mud matrix is r and including,calcite,the content of matrix is lower and that mostly are cements which are mainly quartz and feldspar overgrowths and chlorite films, in the second place are hydromica and ferrocalcite. All the sandstones have entered a period of late diagenetic stage in which the dominant diagenesis types in the area are compaction, cementation and dissolution. Remnant intergranular porosity and feldspar dissolved pore are main pore types which are megalospore and medium pore. Medium-fine throat, fine throat and micro-fine throat are the mainly throat type. Pore texture can be classified as megalospore and fine throat type, medium-pore and micro-fine throat type mainly, and they are main accumulate interspace in research region. The reservoir of Yanchang Formation in Hejiaji area is low- pore and low- permeability in the mass which have strong heterogeneity in bed, interbedded and plane. Studying the parameter of pore and permeability comprehensively and consulting prevenient study results of evaluation of reservoir, the reservoir is classifiedⅡ,Ⅲ and Ⅳ three types in which the Ⅱand Ⅲ can be divided into Ⅱa and Ⅱb, Ⅲa and Ⅲb respectively. Ⅱb and Ⅲa are the main reservoir type in Hejiaji area which are about 72.73%and 80%percent of whole reservoir and effective reservoir respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A large number of catastrophic accidents were aroused by the instability and destruction of anti-dip rock masses in the worldwide engineering projects, such as hydropower station, mine, railways and so on. Problems in relation to deformation and failure about anti-dip rock slopes are significant for engineering geology research. This dissertation takes the Longpan slope in the Jinsha River as a case to study the deformation mechanism of large-scale anti-dip rock masses and the slope stability analysis method. The primary conclusions are as follows. The Dale Reach of Jinsha River, from Longpan to the debouchment of Chongjiang tributary, is located in the southeastern margin of the Qinghai-Tibet Plateau. Longpan slope is the right embankment of Dale dam, it is only 26 km to the Shigu and 18 km to Tiger Leaping Gorge. The areal geology tectonic structures here area are complicated and blurry. Base on the information of geophysical exploration (CSAMT and seismology) and engineering geological investigation, the perdue tectonic pattern of Dale Reach is put forward for the first time in this paper. Due to the reverse slip of Longpan fault and normal left-rotation of Baihanchang fault, the old faulted valley came into being. The thick riverbed sediments have layered characters of different components and corresponding causes, which attribute to the sedimentary environments according with the new tectonic movements such as periodic mountain uplifting in middle Pleistocene. Longpan slope consists of anti-dip alternate sandstone and slate stratums, and the deformable volume is 6.5×107m3 approximately. It was taken for an ancient landslide or toppling failure in the past so that Dale dam became a vexed question. Through the latest field surveying, displacement monitoring and rock masses deforming characters analyses, the geological mechanism is actually a deep-seated gravitational bending deformation. And then the discrete element method is used to simulate the deforming evolution process, the conclusion accords very well with the geo-mechanical patterns analyses. In addition strength reduction method based on DEM is introduced to evaluate the factor of safety of anti-dip rock slope, and in accordance with the expansion way of the shear yielding zones, the progressive shear failure mechanism of large-scale anti-dip rock masses is proposed for the first time. As an embankment or a close reservoir bank to the lower dam, the stability of Longpan slope especially whether or not resulting in sliding with high velocity and activating water waves is a key question for engineering design. In fact it is difficult to decide the unified slip surface of anti-dip rock slope for traditional methods. The author takes the shear yielding zones acquired form the discrete element strength reduction calculation as the potential sliding surface and then evaluates the change of excess pore pressure and factor of stability of the slope generated by rapid drawdown of ponded water. At the same time the dynamic response of the slope under seismic loading is simulated through DEM numerical modeling, the following results are obtained. Firstly the effective effect of seismic inertia force is resulting in accumulation of shear stresses. Secondly the discontinuous structures are crucial to wave transmission. Thirdly the ultimate dynamic response of slope system takes place at the initial period of seismic loading. Lastly but essentially the effect of earthquake load to bringing on deformation and failure of rock slope is the coupling effect of shear stresses and excess pore water pressure accumulation. In view of limitations in searching the critical slip surface of rock slope of the existing domestic and international software for limit equilibrium slope stability analyses, this article proposes a new method named GA-Sarma Algorithm for rock slope stability analyses. Just as its name implies, GA-Sarma Algorithm bases on Genetic Algorithm and Sarma method. GA-Sarma Algorithm assumes the morphology of slip surface to be a broken line with traceability to extend along the discontinuous surface structures, and the slice boundaries is consistent with rock mass discontinuities such as rock layers, faults, cracks, and so on. GA-Sarma Algorithm is revolutionary method that is suitable for global optimization of the critical slip surface for rock slopes. The topics and contents including in this dissertation are closely related to the difficulties in practice, the main conclusions have been authorized by the engineering design institute. The research work is very meaningful and useful for the engineering construction of Longpan hydropower station.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acoustic Gravity waves (AGW) play an important role in balancing the atmospheric energy and momentum budget. Propagation of gravity wave in the atmosphere is one of the important factors of changing middle and upper atmosphere and ionosphere. The purpose of this dissertation is to study the propagation of gravity wave in a compression atmosphere whit means of numerical simulation and to analyze the response of middle and upper atmosphere to pulse disturbance from lower atmosphere. This work begins with the establishment of 2-D fully nonlinear compressible atmospheric dynamic model in polar coordinate, which is used ton numerically study gravity wave propagation. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. We also simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model and analyze the data we obtained by using Fourier Transform (FT), Short-time Fourier Transform (STFT) and Empirical Mode Decomposition (EMD) method which is an important part of Hilbert-Huang Transform (HHT). The research content is summarized in the following: 1. By using a two-dimensional full-implicit-continuous-Eulerian (FICE) scheme and taking the atmospheric basic motion equations as the governing equations, a numerical model for nonlinear propagation of acoustic gravity wave disturbance in two-dimensional polar coordinates is solved. 2. Then the propagation characteristics of acoustic gravity wave packets are investigated and discussed. Results of numerical simulation show that the acoustic gravity wave packets propagate steadily upward and keep its shape well after several periods. 3. We simulate the response of middle and upper atmosphere to pulse disturbance of lower atmosphere in background winds or without background winds by using this model, and obtain the distribution of a certain physical quantity in time and space from earth’s surface to 300km above. The results reveal that the response of ionosphere occurs at a large horizontal distance from the source and the disturbance becomes greater with increasing of height. The situation when the direction of the background wind is opposite to or the same as the direction of disturbed velocity of gravity-wave is studied. The results show that gravity wave propagating against winds is easier than those propagating along winds and the background wind can accelerate gravity wave propagation. Just upon the source, an acoustic wave component with period of 6 min can be found. These images of simulation are similar to observations of the total electron content (TEC) disturbances caused by the great Sumatra-Andaman earthquake on December 26 in 2004. 4. Using the EMD method the disturbed velocity data of a certain physical quantity in time and space can be decomposed into a series of intrinsic mode function (IMF) and a trend mode respectively. The results of EMD reveal impact of the gravity wave frequency under the background winds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recent years seismic tomography has become a powerful tool for studying the three-dimensional crust and mantle structure. In this study, we collected a large number of regional and teleseismic travel-time data and used seismic tomography method to study the relationship between earthquake occurrence and crustal heterogeneity for the 1992 Landers earthquake, heterogeneity and evolution of lithosphere under North China Craton and Southern California, and deep structure and origin of the Changbai intraplate volcano in Northeast China. Our results show a correlation between the seismic rupture zone and crustal heterogeneity. The distribution of the Landers aftershocks is cluster-like and separated or terminated in areas where low-velocity anomalies exist.Most of the large earthquakes with magnitudes >4.0 occurred in or around areas with high P-wave velocity.The possibility is that high-velocity areas are brittle and strong parts which can sustain seismogenic stress,and so can generate earthquakes. Our tomographic images show a very heterogeneous structure in the crust and upper mantle beneath Southern California. Three major anomalies in the upper mantle are revealed clearly beneath the southern Sierra Nevada, Transverse Ranges and Salton Trough. We consider that the high-velocity anomaly beneath the Transverse Ranges was formed through asymmetrical two-side convergence of subcrustal lithosphere and sinking to asthenosphere. Formation of the dense crust root and “drip structure” caused the high-velocity anomaly under the southern Sierra Nevada. The Salton Trough low is the response to the lithospheric extension when the Pacific plate was rifted away from the North American Plate. The tomograpic images beneath the North China Craton show that there exist different lithospheric structures under the different blocks. Complex, prominent low-velocity and high-velocity anomalies are imaged beneath the North China Basin, Trans-North China Orogen (TNCO), and Ordos Block which correspond to rifted, orogenic and cratonic lithospheres, respectively. The thickness of the three-type lithospheres is about 70, 90 and >250 km, respectively. Our results suggest that lithospheric thinning under the eastern part of North China Craton is due to long-term replacement and chemical and thermal erosion of the ancient lithosphere by the hot asthenosphere. The remains of ancient lithosphere exist either in the present upper mantle or have sunk into the mantle transition zone. Our tomographic result of the Changbai volcanic area suggests that the origin of the Changbai volcano is related to the deep dehydration of the subducted Pacific slab and corner flow in the big mantle wedge (BMW) above the stagnant Pacific slab.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

China locates between the circum-Pacific and the Mediterranean-Himalayan seismic belt. The seismic activities in our country are very frequent and so are the collapses and slides of slope triggered by earthquakes. Many collapses and slides of slope take place mainly in the west of China with many earthquakes and mountains, especially in Sichuan and Yunnan Provinces. When a strong earthquake happening, the damage especially in mountains area caused by geological hazards it triggered such as rock collapses, landslides and debris flows is heavier than that it caused directly. A conclusion which the number of lives lost caused by geological hazards triggered by a strong earthquake in mountains area often accounts for a half even more of the total one induced by the strong earthquake can be made by consulting the statistical loss of several representative earthquakes. As a result, geological hazards such as collapses and slides of slope triggered by strong earthquakes attract wide attention for their great costs. Based on field geological investigation, engineering geological exploration and material data analysis, chief conclusions have been drawn after systematic research on formation mechanism, key inducing factors, dynamic characteristics of geological hazards such as collapses and slides of slope triggered by strong earthquakes by means of engineering geomechanics comprehensive analysis, finite difference numerical simulation test, in-lab dynamic triaxial shear test of rock, discrete element numerical simulation. Based on research on a great number of collapses and landslides triggered by Wenchuan and Xiaonanhai Earthquake, two-set methods, i.e. the method for original topography recovering based on factors such as lithology and elevation comparing and the method for reconstructing collapsing and sliding process of slope based on characteristics of seism tectonic zone, structural fissure, diameter spatial distribution of slope debris mass, propagation direction and mechanical property of seismic wave, have been gotten. What is more, types, formation mechanism and dynamic characteristics of collapses and slides of slope induced by strong earthquakes are discussed comprehensively. Firstly, collapsed and slided accumulative mass is in a state of heavily even more broken. Secondly, dynamic process of slope collapsing and sliding consists of almost four stages, i.e. broken, thrown, crushed and river blocked. Thirdly, classified according to failure forms, there are usually four types which are made up of collapsing, land sliding, land sliding-debris flowing and vibrating liquefaction. Finally, as for key inducing factors in slope collapsing and sliding, they often include characteristics of seism tectonic belts, structure and construction of rock mass, terrain and physiognomy, weathering degree of rock mass and mechanical functions of seismic waves. Based on microscopic study on initial fracturing of slope caused by seismic effect, combined with two change trends which include ratio of vertical vs. horizontal peak ground acceleration corresponding to epicentral distance and enlarging effect of peak ground acceleration along slope, key inducing factor of initial slope fracturing in various area with different epicentral distance is obtained. In near-field area, i.e. epicentral distance being less than 30 km, tensile strength of rock mass is a key intrinsic factor inducing initial fracturing of slope undergoing seismic effect whereas shear strength of rock mass is the one when epicentral distance is more than 30 km. In the latter circumstance, research by means of finite difference numerical simulation test and in-lab dynamic triaxial shear test of rock shows that initial fracture begins always in the place of slope shoulder. The fact that fracture strain and shear strength which are proportional to buried depth of rock mass in the place of slope shoulder are less than other place and peak ground acceleration is enlarged in the place causes prior failure at slope shoulder. Key extrinsic factors inducing dynamic fracture of slope at different distances to epicenter have been obtained through discrete element numerical simulation on the total process of collapsing and sliding of slope triggered by Wenchuan Earthquake. Research shows that combined action of P and S seismic waves is the key factor inducing collapsing and sliding of slope at a distance less than 64 km to initial epicenter along earthquake-triggering structure. What is more, vertical tensile action of P seismic wave plays a leading role near epicenter, whereas vertical shear action of S seismic wave plays a leading role gradually with epicentral distance increasing in this range. On the other hand, single action of P seismic wave becomes the key factor inducing collapsing and sliding of slope at a distance between 64 km and 216 km to initial epicenter. Horizontal tensile action of P seismic wave becomes the key factor gradually from combined action between vertical and horizontal tensile action of P seismic wave with epicentral distance increasing in this distance range. In addition, initial failure triggered by strong earthquakes begins almost in the place of slope shoulder. However, initial failure beginning from toe of slope relates probably with gradient and rock occurrence. Finally, starting time of initial failure in slope increases usually with epicentral distance. It is perhaps that the starting time increasing is a result of attenuating of seismic wave from epicenter along earthquake-triggering structure. It is of great theoretical and practical significance for us to construct towns and infrastructure in fragile geological environment along seism tectonic belts and conduct risk management on earthquake-triggered geological hazards by referring to above conclusions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrochemistry, isotope and CFCs were used to determine groundwater transport in the eastern part of the Guanzhong Basin. In this paper, we systematically collected water samples and measured major ions, 2H-18O and CFCs in surface water and shallow groundwater. Groundwater in this region can be divided into three categories based on total dissolved solids (TDS): fresh water with TDS < 1g/L, brackish water with TDS between 1~3g/L, and saline water with TDS > 3g/L. Saline water is mainly located in the north of the Wei River, and saline groundwater is not in the south. Tributaries in the south of the Wei River and underlain groundwater had similar 2H-18O values, indicating a close hydraulic connection between them. Tributaries in the north of the Wei River characterized certain extent of evaporation, and 2H-18O values deviated to a differing extent between surface water and groundwater, indicating that surface water in the north bank of the Wei River has little hydraulic connection with underlain groundwater. The CFCs age of groundwater from the piedmont recharge area was young, and became older toward the Wei River valley. Vertically, the CFCs age of groundwater increased with well depth. The shallow groundwater is mainly composed of young water with ages < 60 years and old water with ages > 60 years. Young water is in a larger proportion. The NO3-N concentration positively correlates with the CFC-12 concentration in the groundwater, which indicates that young water is subjected to be contaminated. Keyword: Guanzhong Basin , shallow groundwater, isotope, CFC

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large earthquakes, such as the Chile earthquake in 1960 and the Sumatra-Andaman earthquake on Dec 26, 2004 in Indonesia, have generated the Earth’s free oscillations. The eigenfrequencies of the Earth’s free oscillations are closely related to the Earth’s internal structures. The conventional methods, which mainly focus on calculating the eigenfrequecies by analytical ways, and the analysis on observations can not easily study the whole processes from earthquake occurrence to the Earth’s free oscillation inspired. Therefore, we try to use numerical method incorporated with large-scale parallel computing to study on the Earth’s free oscillations excited by giant earthquakes. We first give a review of researches and developments of the Earth’s free oscillation, and basical theories under spherical coordinate system. We then give a review of the numerical simulation of seismic wave propagation and basical theories of spectral element method to simulate global seismic wave propagation. As a first step to study the Earth’s free oscillations, we use a finite element method to simulate the propagation of elastic waves and the generation of oscillations of the chime bell of Marquis Yi of Zeng, by striking different parts of the bell, which possesses the oval crosssection. The bronze chime bells of Marquis Yi of Zeng are precious cultural relics of China. The bells have a two-tone acoustic characteristic, i.e., striking different parts of the bell generates different tones. By analysis of the vibration in the bell and the spectrum analysis, we further help the understanding of the mechanism of two-tone acoustic characteristics of the chime bell of Marquis Yi of Zeng. The preliminary calculations have clearly shown that two different modes of oscillation can be generated by striking different parts of the bell, and indicate that finite element numerical simulation of the processes of wave propagation and two-tone generation of the chime bell of Marquis Yi of Zeng is feasible. These analyses provide a new quantitative and visual way to explain the mystery of the two-tone acoustic characteristics. The method suggested by this study can be applied to simulate free oscillations excited by great earthquakes with complex Earth structure. Taking into account of such large-scale structure of the Earth, small-scale low-precision numerical simulation can not simply meet the requirement. The increasing capacity in high-performance parallel computing and progress on fully numerical solutions for seismic wave fields in realistic three-dimensional spherical models, Spectral element method and high-performance parallel computing were incorporated to simulate the seismic wave propagation processes in the Earth’s interior, without the effects of the Earth’s gravitational potential. The numerical simulation shows that, the results of the toroidal modes of our calculation agree well with the theoretical values, although the accuracy of our results is much limited, the calculated peaks are little distorted due to three-dimensional effects. There exist much great differences between our calculated values of spheroidal modes and theoretical values, because we don’t consider the effect the Earth’ gravitation in numerical model, which leads our values are smaller than the theoretical values. When , is much smaller, the effect of the Earth’s gravitation make the periods of spheroidal modes become shorter. However, we now can not consider effects of the Earth’s gravitational potential into the numerical model to simulate the spheroidal oscillations, but those results still demonstrate that, the numerical simulation of the Earth’s free oscillation is very feasible. We make the numerical simulation on processes of the Earth’s free oscillations under spherically symmetric Earth model using different special source mechanisms. The results quantitatively show that Earth’s free oscillations excited by different earthquakes are different, and oscillations at different locations are different for free oscillation excited by the same earthquake. We also explore how the Earth’s medium attenuation will take effects on the Earth’s free oscillations, and take comparisons with the observations. The medium attenuation can make influences on the Earth’s free oscillations, though the effects on lower-frequency fundamental oscillations are weak. At last, taking 2008 Wenchuan earthquake for example, we employ spectral element method incorporated with large-scale parallel computing technology to investigate the characteristics of seismic wave propagation excited by Wenchuan earthquake. We calculate synthetic seismograms with one-point source model and three-point source model respectively. Full 3-D visualization of the numerical results displays the profile of the seismic wave propagation with respect to time. The three-point source, which was proposed by the latest investigations through field observation and reverse estimation, can better demonstrate the spatial and temporal characteristics of the source rupture processes than one-point source. Primary results show that those synthetic signals calculated from three-point source agree well with the observations. This can further reveal that the source rupturing process of Wenchuan earthquake is a multi-rupture process, which is composed by at least three or more stages of rupture processes. In conclusion, the numerical simulation can not only solve some problems concluding the Earth’s ellipticity and anisotropy, which can be easily solved by conventional methods, but also finally solve the problems concluding topography model and lateral heterogeneity. We will try to find a way to fully implement self-gravitation in spectral element method in future, and do our best to continue researching the Earth’s free oscillations using the numerical simulations to see how the Earth’ lateral heterogeneous will affect the Earth’s free oscillations. These will make it possible to bring modal spectral data increasingly to bear on furthering our understanding of the Earth’s three-dimensional structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of regional crustal stability of active tectonic region basically includes analysis of recent activity of Earth's crust, single factor assessment, study of complexity, and comprehensive assessment of crust stability. In this thesis, some work are made as follows: · Based on abundant data from gravity field, aeromagnetic survey, magnetism, magnetotelluric deep sounding, remote sensing and geotectonic as well as earthquakes observed in recent years around this region and adjacent zones, we can get a through understanding about the structural features and activity of the earth's crust in Chuan-Dian region. The results from explosion earthquake and telluric electromagnetic sounding are consistent with the structural features of the crust manifested by the geophysical field. The data of deep geologic structures are important for us to work out a vivid three-dimensional model of the earth's crustal structure of the Jinsha River region. According to a synthesis, the author of this thesis proposes some indicators for dividing the faulted blocks. It can also be inferred that the movement of the Chuan-Dian faulted block, which is the relatively active part of southwestern China, is controlled by the boundary faults, and the intensive activity and deformation are concentrated along the boundaries of the block. · Mainly discussing respectively the mechanism and laws of active faults, earthquakes, and geological hazards activity, and their influences on the stability and security of engineering, also trying to probe into the way to assess the risk of single factor in this section. Especially with the method of fractal geometry, the thesis has discussed how to study the complexity of each factor. These geologic hazards which are distributed at the uppermost part of the crust in this region form a typical mountainous set of the active tectonic areas. The results of survey show that some slopes are liable- to -sliding with a weak layer of low shear strength. Occurrences of landslides are to a great extent related to local geological structures, in particular active faults. This is why numerous landslides have occurred simultaneously around the epicenter of a strong earthquake or the center of a strong rainfall, which are related to active faults. · The analysis of the crustal stability is based on a regional grid division, and a fuzzy comprehensive analysis method is used to determine the grade of the quality in each grid. The evaluation factors and their weights are taken from the results of the hierarchical analysis. The evaluation indexes consist of qualitative and quantitative ones. The qualitative ones can be quantified through the experts weighing system, while the quantitative ones can be obtained from statistical analysis. For quality grades, four levels are used: stable, essentially stable, sub-stable, and unstable. The results of the evaluation on Jinshajiang region demonstrate that the crustal stability become distinctly worse in the areas controlled by active deep faults. Therefore, detailed investigations on the active faulting and geologic hazards, include earthquake activity are especially necessary for those areas adjacent to the deep fault belts. On the bases of the data available and the survey results, we have made a preliminary assessment for the construction conditions and adaptability of every planned site in the middle or lower reaches of Jinsha River. Finally, the thesis prospected the vista of the study of crustal stability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Xuanlong-type Hematite Deposits, distributed in Xuanhua and Longguang area in Hebei province and hosted in the Changchengian Chuanlinggou Formation of Mesoproterozoic, is an oldest depositional iron deposit characterized by oolitic and stromatolitic hematite and siderite. This thesis made an systematic study of its sedimentary, sedimentology, geochemistry, mineralogy and sequence stratigraphy. Based on above, the mechanism and background of biomineralization are discussed. There are four types of hematite ores including stromatolite, algal oolite, algal pisolite and oncolite. Based on detailed study on ore texture, the authors think both algal oolite and algal pisolite ores are organic texture ores, and related to the role of microorganisms. The process of blue-green algae and bacteria in the Xuanlong basin absorbing, adsorbing and sticking iron to build up stromatolite is the formation process of Xuanlong-type hematite deposit. Researches on ore-bearing series and ore geochemistry show that the enrichment of elements is closely related to the microorganism activities. Fe_2O_3 is enriched in dark laminations of stromatolite with much organic matter and SiO_2 in light laminations with detrital matters. The trace elements, especially biogenic elements, including V, P, Mo are enriched in ores but relatively low in country rocks. The paper also demonstrates on the sequence stratigraphy of hematite deposits and five sequences and twelve systems are divided. The characteristics of sequence stratigraphy show that the deposit-forming location has obviously selectivity and always exists under a transgressive setting. The oxygen isotope in hematite is about -2.2~5.7‰, which is similar to that of Hamlys iron formation of Australia but more negative than that of volcanic or hydrothermal iron deposits characterized by high positive values. The calculation by the result of oxygen isotope analysis shows that the temperature of ancient sea water was 48.53℃. The negative value of carbon isotope from siderite indicates its biogenic carbon source. Meanwhile, the occurrence of seismite in the ore-beds, which indicates the formation of hematite deposits is associated with frequent shock caused by structural movement such as distal volcano or ocean-bottom earthquake etc, show the occurrence of hematite deposits is eventual, not gradual. In shorts, Xuanlong-type hematite deposits were the result of interaction among geological setting of semi-isolated Xuanglong basin, favorable hot and humid climate condition, abundant iron source, microorganism such as algae and bateria as well as the fluctuation of the sea level.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many observations show that seismic anisotropy is very common in the crust and upper mantle of the Earth. Seismic anisotropy can provide some clue about the changing and transporting process inside the earth. in recent years, abundant earthquake travel time data are accumulated, computers become more powerful, and these make the inversion of earthquake travel time data practical. In this thesis we studied the theory of elastic wave in anisotropic media, some formule for travel time inversion were derived. We present an iterative procedure to determine 21 elastic parameters from qP wave travel times. No a priori assumptions about heterogeneity and anisotropy of the model are made. The procedure is suitable for the case when we know nothing about the symmetry of anisotropy of the media, as well as for the case of earthquake travel time inversion which may contain various symmetry of anisotropy. The procedure is tested with a synthetic multiple-source offset VSP experiment. The results proved that the formulae are correct, and the procedure is practical. The results and the related theory indicate that the anisotropic inversion needs more rays than isotropic case. For a 2-D weak anisotropic (WA) medium, we need at least 5 rays in different directions to retrieve the elastic parameters on one grid point, and for a 3-D WA medium we need at least 15 rays in different directions to retrieve the elastic parameters on one grid point. The results also indicate that the starting background velocity has no influence on the final results, at least for the model we specified. Our results also show that insufficient illumination coverage will slow down the convergence rate, and make the results more sensitive to noise. We apply the procedure to a set of field travel time data. The data is from an artificial seismic observation. This observation is for locating micro-seismic events around a tunnel, its purpose is to find out if the digging process and the stress condition around the tunnel can generate micro-cracks. The size of this area is around 100m. The anisotropy derived from qP travel times is the same as the anisotropy showed by apparent velocities, and is also consistent with the anisotropy derived from S-wave splitting phenomena.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Study on rheology of the lithosphere and the environments of the seismogenic layer is currently the basic project of the international earthquake research. Yunnan is the ideal place for studying this project. Through the multi-disciplinary comprehensive study of petrology, geophysics, seismo-geology, rock mechanics, etc., the depth-strength profiles of the lithosphere have been firstly constructed, and the seismogenic layer and its geophysical and tectonic environments in Yunnan have been systematically expounded in this paper. The related results achieved are of the important significances for further understanding the mechanism of strong earthquake generation, dividing the potential foci and exposing recent geodynamical processes in Yunnan. Through the comprehensive contrast of the metamorphic rocks in early and middle Proterozoic outcropping on the surface, DSS data and experimental data of rock seismic velocity under high temperature and high pressure, the petrological structure of the crust and upper mantle has been studied on Yunnan: the upper, middle and lower crust is composed of the metamorphic rocks of greenschist, amphibolite and granulite facies, respectively or granitoids, diorites and gabbros, respectively, and the upper mantle composed of the peridotites. Through the contrast studies of the heat flow and epicenters of the strong earthquakes, the distribution of the geotemperature and the data of focal depth, the relationship of between seismicity and geothermal structure of the lithosphere in Yunnan has been studied: the strong earthquakes with magnitude M ≥ 6.0 mainly take place at the geothermal gradient zone, and the seismic foci densely distribute between 200~500 ℃ isogeotherms. On the basis of studies of the rock properties and constituents of the crust and upper mantle and geothermal structure of the lithosphere, the structure of the rheological stratification of the lithosphere has been studied, and the corresponding depth-strength profiles have been constructed in Yunnan. The lithosphere in majority region of Yunnan has the structure of the rheological stratification, i.e. the brittle regime in the upper crust or upper part of the upper crust, ductile regime in the middle crust or lower part of the upper crust to middle crust, ductile regime in the lower crust and ductile regime in the subcrustal lithosphere. The rheological stratification has the quite marked lateral variations in the various tectonic units. The distributions of the seismogenic layer have been determined by using the high accurate data of focal depth. Through the contrast of the petrological structure, the structure of seismic velocity, electric structure, geotemperature structure, and rheological structure and the study of the focal mechanism in the seismogenic layer, the geophysical environments of the seismogenic layer in Yunnan have been studied. The seismogenic layer in Yunnan is located at the depths of 3 ~ 20 km; the rocks in the seismogenic layer are composed of the metamorphic rocks of greenschist to amphibolite facies (or granites to diorites); the seismogenic layer and its internal focal regions of strong earthquakes have the structure of medium properties with the relatively high seismic velocity, high density and high resistivity; there exists the intracrustal low seismic velocity and high conductivity layer bellow the seismogenic layer, the geotemperature is generally 100~500 ℃ in the depth range in which the seismogenic layer is located. The horizontal stress field predominates in the seismogenic layer, the seismogenic layer corresponds to the brittle regime of the upper crust or brittle regime of the upper crust to semibrittle regime of the middle crust. The formation of the seismogenic layer, preparedness and occurrence of the strong earthquakes is the result of the comprehensive actions of the source fault, rock constituent, structure of the medium properties, distribution of the geotemperature, rheological structure of the seismogenic layer and its external environments. Through the study of the structure, active nature, slip rate, segmentation of the active faults, and seismogenic faults, the tectonic environments of the seismogenic layer in Yunnan have been studied. The source faults of the seismogenic layer in Yunnan are mainly A-type ones and embody mainly the strike slip faults with high dip angle. the source faults are the right-lateral strike slip ones with NW-NNW trend and left-lateral strike slip ones with NE-NEE trend in Southwestern Yunnan, the right-lateral strike slip ones with NNW trend and left-lateral strike slip ones with NNE trend (partially normal ones) in Northwestern Yunnan, the right-lateral strike slip ones with NWW trend in Central Yunnan and left-lateral strike slip ones with NW-NNW trend in Eastern Yunnan. Taking Lijiang earthquake with Ms = 7.0 for example. The generating environments of the strong earthquake and seismogenic mechanical mechanism have been studied: the source region of the strong earthquake has the media structure with the relatively high seismic velocity and high resistivity, there exists the intracrustal low velocity and high conductivity layer bellow it and the strong earthquakes occur near the transitional zone of the crustal brittle to ductile deformation. These characteristics are the generality of the generating environments of strong earthquakes. However, the specific seismogenic tectonic environments and action of the stress field of the seismic source in the various regions, correspondingly constrains the dislocation and rupture mechanical mechanism of source fault of strong earthquake.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Scientists have paid much attention to the greenhouse effects and the greenhouse gases for the fact of global warming. There are many uncertainties in the prediction of future climatic change. One of the important reasons causing the uncertainties is insufficient researches of the sources and sinks of greenhouse gases, especially, there is a missing sink in the global carbon cycle. The recent researches proposal that there may be an important carbon sink in the middle-latitude terrestrial ecosystems (vegetation and soil) in the North Hemisphere, despite that there is much disputation about its position and amplitude. Chinese loess is located in the middle latitude area in the North Hemisphere, what kind of role does it play in and how does it influence on the balance of the global greenhouse gases budget? For this reason, many samples were taken and analyzed from wide range and multi-stratum of Chinese loess to understand characteristics of major greenhouse gases in loess and loess possible effect on global greenhouse gas budget. Using self-made spiral corer, we totally took 81 gas samples and 65 soil samples from 7 loess profiles in China such as Zhaitang loess section of Beijing, Pianguan, Xingxian, Lishi, Puxian, Jishan loess section of Shanxi Province, and Luochuan loess section of Shaanxi Province. The gas concentrations for CO_2, CH_4 and N_2O, the contents of N_2, O_2 and carbonate, and the carbon isotopic compositions of CO_2 and carbonate in loess strata sequences are observed and measured. In addition, 19 gas samples data of the Weinan loess section, Shaanxi Province are combination with this research to study characteristics of greenhouse gases in loess. This research indicates that (1) the free gases in loess are neither paleo-atmospheric gases nor modern atmospheric gases; (2) the concentrations of CO_2, CH_4 and N_2O in loess are higher than atmospheric level; (3) the δ~(13)C of loess CO_2 shows that the CO_2 in loess mainly comes from the oxygenolysis of organic matters, but because of isotopic exchange with carbonate in loess, the carbon isotopic exchange with carbonate in loess, the carbon isotopic compositions of loess CO_2 are much more heavier than organic original CO_2; (4) the concentration of CH_4 in Malan loess is lower because it is not favorable for the decomposition of anaerobic bacteria in the Malan Loess; (5) estimation of the total amount of the carbonate in loess reveals that loess is a huge carbon reservoir (about 850PgC). In addition, the impact of the deuterogenic carbonatization during the loess accumulation on the global carbon cycle was discussed, and the preliminary conclusion is that the research work is still not enough to evaluate the effect of loess on the sources and sinks of the anthropogenic CO_2.