871 resultados para Serum Amyloid A Protein
Resumo:
Infectious diseases and malnutrition represent major burdens afflicting millions of people in developing countries. Both conditions affect individuals in industrialized nations, particularly the aged, the HIV-infected, and people with chronic diseases. While malnutrition is known to induce a state of immunodeficiency, the mechanisms responsible for compromised antimicrobial resistance in malnourished hosts remain obscure. In the present study, mice fed a 2% protein diet and developing protein calorie malnutrition, in contrast to well-nourished controls receiving a 20% protein diet, rapidly succumbed to infection with Mycobacterium tuberculosis. Malnourished mice exhibited a tissue-specific diminution in the expression of interferon γ, tumor necrosis factor α, and the inducible form of nitric oxide synthase in the lungs, but not the liver. The expression of these molecules critical to the production of mycobactericidal nitrogen oxides was depressed in malnourished animals in the lungs specifically at early times (<14 days) after infection. At later times, levels of expression became comparable to those in well-nourished controls, although the bacillary burden in the malnourished animals continued to rise. Nevertheless, urinary and serum nitrate contents, an index of total nitric oxide (NO) production in vivo, were not detectably diminished in malnourished, mycobacteria-infected mice. In contrast to the selective and early reduction of lymphokines and the inducible form of nitric oxide synthase in the lung, a marked diminution of the granulomatous reaction was observed in malnourished mice throughout the entire course of infection in all tissues examined (lungs, liver, and spleen). Remarkably, the progressively fatal course of tuberculosis observed in the malnourished mice could be reversed by restoring a full protein (20%) diet. The results indicate that protein calorie malnutrition selectively compromises several components of the cellular immune response that are important for containing and restricting tuberculous infection, and suggest that malnutrition-induced susceptibility to some infectious diseases can be reversed or ameliorated by nutritional intervention.
Resumo:
β-Amyloid peptide (Aβ), one of the primary protein components of senile plaques found in Alzheimer disease, is believed to be toxic to neurons by a mechanism that may involve loss of intracellular calcium regulation. We have previously shown that Aβ blocks the fast-inactivating potassium (A) current. In this work, we show, through the use of a mathematical model, that the Aβ-mediated block of the A current could result in increased intracellular calcium levels and increased membrane excitability, both of which have been observed in vitro upon acute exposure to Aβ. Simulation results are compared with experimental data from the literature; the simulations quantitatively capture the observed concentration dependence of the neuronal response and the level of increase in intracellular calcium.
Resumo:
Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The predominant early effect of aldosterone is to increase the activity of the epithelial sodium channel (ENaC), although ENaC mRNA and protein levels do not change initially. Rather, the open probability and/or number of channels in the apical membrane are greatly increased by unknown modulators. To identify hormone-stimulated gene products that modulate ENaC activity, a subtracted cDNA library was generated from A6 cells, a stable cell line of renal distal nephron origin, and the effect of candidates on ENaC activity was tested in a coexpression assay. We report here the identification of sgk (serum and glucocorticoid-regulated kinase), a member of the serine–threonine kinase family, as an aldosterone-induced regulator of ENaC activity. sgk mRNA and protein were strongly and rapidly hormone stimulated both in A6 cells and in rat kidney. Furthermore, sgk stimulated ENaC activity approximately 7-fold when they were coexpressed in Xenopus laevis oocytes. These data suggest that sgk plays a central role in aldosterone regulation of Na+ absorption and thus in the control of extracellular fluid volume, blood pressure, and sodium homeostasis.
Resumo:
To investigate the molecular basis of PTEN-mediated tumor suppression, we introduced a null mutation into the mouse Pten gene by homologous recombination in embryonic stem (ES) cells. Pten−/− ES cells exhibited an increased growth rate and proliferated even in the absence of serum. ES cells lacking PTEN function also displayed advanced entry into S phase. This accelerated G1/S transition was accompanied by down-regulation of p27KIP1, a major inhibitor for G1 cyclin-dependent kinases. Inactivation of PTEN in ES cells and in embryonic fibroblasts resulted in elevated levels of phosphatidylinositol 3,4,5,-trisphosphate, a product of phosphatidylinositol 3 kinase. Consequently, PTEN deficiency led to dosage-dependent increases in phosphorylation and activation of Akt/protein kinase B, a well-characterized target of the phosphatidylinositol 3 kinase signaling pathway. Akt activation increased Bad phosphorylation and promoted Pten−/− cell survival. Our studies suggest that PTEN regulates the phosphatidylinositol 3,4,5,-trisphosphate and Akt signaling pathway and consequently modulates two critical cellular processes: cell cycle progression and cell survival.
Resumo:
It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition.
Resumo:
The infectious agent of transmissible spongiform encephalopathies is believed to consist of an oligomeric isoform, PrPSc, of the monomeric cellular prion protein, PrPC. The conversion of PrPC to PrPSc is characterized by a decrease in α-helical structure, an increase in β-sheet content, and the formation of PrPSc amyloid. Whereas the N-terminal part of PrPC comprising residues 23–120 is flexibly disordered, its C-terminal part, PrP(121–231), forms a globular domain with three α-helices and a small β-sheet. Because the segment of residues 90–231 is protease-resistant in PrPSc, it is most likely structured in the PrPSc form. The conformational change of the segment containing residues 90–120 thus constitutes the minimal structural difference between PrPC and a PrPSc monomer. To test whether PrP(121–231) is also capable to undergo conformational transitions, we analyzed its urea-dependent unfolding transitions at neutral and acidic pH. We identified an equilibrium unfolding intermediate of PrP(121–231) that is exclusively populated at acidic pH and shows spectral characteristics of a β-sheet protein. The intermediate is in rapid equilibrium with native PrP(121–231), significantly populated in the absence of urea at pH 4.0, and may have important implications for the presumed formation of PrPSc during endocytosis.
Resumo:
Site-specific photocleavage of hen egg lysozyme and bovine serum albumin (BSA) by N-(l-phenylalanine)-4-(1-pyrene)butyramide (Py-Phe) is reported. Py-Phe binds to lysozyme and BSA with binding constants 2.2 ± 0.3 × 105 M−1 and 6.5 ± 0.4 × 107 M−1, respectively. Photocleavage of lysozyme and BSA was achieved with high specificity when a mixture of protein, Py-Phe, and an electron acceptor, cobalt(III) hexammine (CoHA), was irradiated at 344 nm. Quantum yields of photocleavage of lysozyme and BSA were 0.26 and 0.0021, respectively. No protein cleavage was observed in the absence of Py-Phe, CoHA, or light. N-terminal sequencing of the protein fragments indicated a single cleavage site of lysozyme between Trp-108 and Val-109, whereas the cleavage of BSA was found to be between Leu-346 and Arg-347. Laser flash photolysis studies of a mixture of protein, Py-Phe, and CoHA showed a strong transient with absorption centered at ≈460 nm, corresponding to pyrene cation radical. Quenching of the singlet excited state of Py-Phe by CoHA followed by the reaction of the resulting pyrenyl cation radical with the protein backbone may be responsible for the protein cleavage. The high specificity of photocleavage may be valuable in targeting specific sites of proteins with small molecules.
Resumo:
X-ray diffraction and other biophysical tools reveal features of the atomic structure of an amyloid-like crystal. Sup35, a prion-like protein in yeast, forms fibrillar amyloid assemblies intrinsic to its prion function. We have identified a polar peptide from the N-terminal prion-determining domain of Sup35 that exhibits the amyloid properties of full-length Sup35, including cooperative kinetics of aggregation, fibril formation, binding of the dye Congo red, and the characteristic cross-β x-ray diffraction pattern. Microcrystals of this peptide also share the principal properties of the fibrillar amyloid, including a highly stable, β-sheet-rich structure and the binding of Congo red. The x-ray powder pattern of the microcrystals, extending to 0.9-Å resolution, yields the unit cell dimensions of the well-ordered structure. These dimensions restrict possible atomic models of this amyloid-like structure and demonstrate that it forms packed, parallel-stranded β-sheets. The unusually high density of the crystals shows that the packed β-sheets are dehydrated, despite the polar character of the side chains. These results suggest that amyloid is a highly intermolecularly bonded, dehydrated array of densely packed β-sheets. This dry β-sheet could form as Sup35 partially unfolds to expose the peptide, permitting it to hydrogen-bond to the same peptide of other Sup35 molecules. The implication is that amyloid-forming units may be short segments of proteins, exposed for interactions by partial unfolding.
Resumo:
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.
Resumo:
Jaagsiekte sheep retrovirus (JSRV) can induce rapid, multifocal lung cancer, but JSRV is a simple retrovirus having no known oncogenes. Here we show that the envelope (env) gene of JSRV has the unusual property that it can induce transformation in rat fibroblasts, and thus is likely to be responsible for oncogenesis in animals. Retrovirus entry into cells is mediated by Env interaction with particular cell-surface receptors, and we have used phenotypic screening of radiation hybrid cell lines to identify the candidate lung cancer tumor suppressor HYAL2/LUCA2 as the receptor for JSRV. HYAL2 was previously described as a lysosomal hyaluronidase, but we show that HYAL2 is actually a glycosylphosphatidylinositol (GPI)-anchored cell-surface protein. Furthermore, we could not detect hyaluronidase activity associated with or secreted by cells expressing HYAL2, whereas we could easily detect such activity from cells expressing the related serum hyaluronidase HYAL1. Although the function of HYAL2 is currently unknown, other GPI-anchored proteins are involved in signal transduction, and some mediate mitogenic responses, suggesting a potential role of HYAL2 in JSRV Env-mediated oncogenesis. Lung cancer induced by JSRV closely resembles human bronchiolo-alveolar carcinoma, a disease that is increasing in frequency and now accounts for ≈25% of all lung cancer. The finding that JSRV env is oncogenic and the identification of HYAL2 as the JSRV receptor provide tools for further investigation of the mechanism of JSRV oncogenesis and its relationship to human bronchiolo-alveolar carcinoma.
Resumo:
Alzheimer's disease produces a devastating decline in mental function, with profound effects on learning and memory. Early consequences of the disease include the specific loss of cholinergic neurons in brain, diminished cholinergic signaling, and the accumulation of β-amyloid peptide in neuritic plaques. Of the nicotinic acetylcholine receptors at risk, the most critical may be those containing the α7 gene product (α7-nAChRs), because they are widespread, have a high relative permeability to calcium, and regulate numerous cellular events in the nervous system. With the use of whole-cell patch–clamp recording we show here that nanomolar concentrations of β-amyloid peptides specifically and reversibly block α7-nAChRs on rat hippocampal neurons in culture. The block is noncompetitive, voltage-independent, and use-independent and is mediated through the N-terminal extracellular domain of the receptor. It does not appear to require either calcium influx or G protein activation. β-Amyloid blockade is likely to be a common feature of α7-nAChRs because it applies to the receptors at both somato-dendritic and presynaptic locations on rat hippocampal neurons and extends to homologous receptors on chick ciliary ganglion neurons as well. Because α7-nAChRs in the central nervous system are thought to have numerous functions and recently have been implicated in learning and memory, impaired receptor function in this case may contribute to cognitive deficits associated with Alzheimer's disease.
Resumo:
Transthyretin (TTR) tetramer dissociation and misfolding facilitate assembly into amyloid fibrils that putatively cause senile systemic amyloidosis and familial amyloid polyneuropathy. We have previously discovered more than 50 small molecules that bind to and stabilize tetrameric TTR, inhibiting amyloid fibril formation in vitro. A method is presented here to evaluate the binding selectivity of these inhibitors to TTR in human plasma, a complex biological fluid composed of more than 60 proteins and numerous small molecules. Our immunoprecipitation approach isolates TTR and bound small molecules from a biological fluid such as plasma, and quantifies the amount of small molecules bound to the protein by HPLC analysis. This approach demonstrates that only a small subset of the inhibitors that saturate the TTR binding sites in vitro do so in plasma. These selective inhibitors can now be tested in animal models of TTR amyloid disease to probe the validity of the amyloid hypothesis. This method could be easily extended to evaluate small molecule binding selectivity to any protein in a given biological fluid without the necessity of determining or guessing which other protein components may be competitors. This is a central issue to understanding the distribution, metabolism, activity, and toxicity of potential drugs.
Resumo:
A 16-amino acid oligopeptide forms a stable β-sheet structure in water. In physiological solutions it is able to self-assemble to form a macroscopic matrix that stains with Congo red. On raising the temperature of the aqueous solution above 70°C, an abrupt structural transition occurs in the CD spectra from a β-sheet to a stable α-helix without a detectable random-coil intermediate. With cooling, it retained the α-helical form and took several weeks at room temperature to partially return to the β-sheet form. Slow formation of the stable β-sheet structure thus shows kinetic irreversibility. Such a formation of very stable β-sheet structures is found in the amyloid of a number of neurological diseases. This oligopeptide could be a model system for studying the protein conformational changes that occurs in scrapie or Alzheimer disease. The abrupt and direct conversion from a β-sheet to an α-helix may also be found in other processes, such as protein folding and protein–protein interaction. Furthermore, such drastic structure changes may also be exploited in biomaterials designed as sensors to detect environmental changes.
Resumo:
Activation of the ubiquitously expressed Na-H exchanger, NHE1, results in an increased efflux of intracellular H+. The increase in intracellular pH associated with this H+ efflux may contribute to regulating cell proliferation, differentiation, and neoplastic transformation. Although NHE1 activity is stimulated by growth factors and hormones acting through multiple GTPase-mediated pathways, little is known about how the exchanger is directly regulated. Using expression library screening, we identified a novel protein that specifically binds to NHE1 at a site that is critical for growth factor stimulation of exchange activity. This protein is homologous to calcineurin B and calmodulin and is designated CHP for calcineurin B homologous protein. Like NHE1, CHP is widely expressed in human tissues. Transient overexpression of CHP inhibits serum- and GTP-ase-stimulated NHE1 activity. CHP is a phosphoprotein and expression of constitutively activated GTPases decreases CHP phosphorylation. The phosphorylation state of CHP may therefore be an important signal controlling mitogenic regulation of NHE1.
Resumo:
Mitogenic and stres signals results in the activation of extracellular signal-regulated kinases (ERKs) and stress-activated protein kinase/c-Jun N-terminal kinases (SAPK/JNKs), respectively, which are two subgroups of the mitogen-activated protein kinases. A nuclear target of mitogen-activated protein (MAP) kinases is the ternary complex factor Elk-1, which underlies its involvement in the regulation of c-fos gene expression by mitogenic and stress signals. A second ternary complex factor, Sap1a, is coexpressed with Elk-1 in several cell types and shares attributes of Elk-1, the significance of which is not clear. Here we show that Sap1a is phosphorylated efficiently by ERKs but not by SAPK/JNKs. Serum response factor-dependent ternary complex formation by Sap1a is stimulated by ERK phosphorylation but not by SAPK/JNKs. Moreover, Sap1a-mediated transcription is activated by mitogenic signals but not by cell stress. These results suggest that Sap1a and Elk-1 have distinct physiological functions.