971 resultados para Sequential Monte Carlo methods
Resumo:
A wide range of tests for heteroskedasticity have been proposed in the econometric and statistics literature. Although a few exact homoskedasticity tests are available, the commonly employed procedures are quite generally based on asymptotic approximations which may not provide good size control in finite samples. There has been a number of recent studies that seek to improve the reliability of common heteroskedasticity tests using Edgeworth, Bartlett, jackknife and bootstrap methods. Yet the latter remain approximate. In this paper, we describe a solution to the problem of controlling the size of homoskedasticity tests in linear regression contexts. We study procedures based on the standard test statistics [e.g., the Goldfeld-Quandt, Glejser, Bartlett, Cochran, Hartley, Breusch-Pagan-Godfrey, White and Szroeter criteria] as well as tests for autoregressive conditional heteroskedasticity (ARCH-type models). We also suggest several extensions of the existing procedures (sup-type of combined test statistics) to allow for unknown breakpoints in the error variance. We exploit the technique of Monte Carlo tests to obtain provably exact p-values, for both the standard and the new tests suggested. We show that the MC test procedure conveniently solves the intractable null distribution problem, in particular those raised by the sup-type and combined test statistics as well as (when relevant) unidentified nuisance parameter problems under the null hypothesis. The method proposed works in exactly the same way with both Gaussian and non-Gaussian disturbance distributions [such as heavy-tailed or stable distributions]. The performance of the procedures is examined by simulation. The Monte Carlo experiments conducted focus on : (1) ARCH, GARCH, and ARCH-in-mean alternatives; (2) the case where the variance increases monotonically with : (i) one exogenous variable, and (ii) the mean of the dependent variable; (3) grouped heteroskedasticity; (4) breaks in variance at unknown points. We find that the proposed tests achieve perfect size control and have good power.
Resumo:
This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors.
Resumo:
In this paper, we study several tests for the equality of two unknown distributions. Two are based on empirical distribution functions, three others on nonparametric probability density estimates, and the last ones on differences between sample moments. We suggest controlling the size of such tests (under nonparametric assumptions) by using permutational versions of the tests jointly with the method of Monte Carlo tests properly adjusted to deal with discrete distributions. We also propose a combined test procedure, whose level is again perfectly controlled through the Monte Carlo test technique and has better power properties than the individual tests that are combined. Finally, in a simulation experiment, we show that the technique suggested provides perfect control of test size and that the new tests proposed can yield sizeable power improvements.
Resumo:
This paper addresses the issue of estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads us to take into account the covariance between the mean and the variance and the variance of the variance, that is, the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely, the QMLE, the GMM and the M-estimation. The ususal univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular, the importance of skewness.
Resumo:
Conditional heteroskedasticity is an important feature of many macroeconomic and financial time series. Standard residual-based bootstrap procedures for dynamic regression models treat the regression error as i.i.d. These procedures are invalid in the presence of conditional heteroskedasticity. We establish the asymptotic validity of three easy-to-implement alternative bootstrap proposals for stationary autoregressive processes with m.d.s. errors subject to possible conditional heteroskedasticity of unknown form. These proposals are the fixed-design wild bootstrap, the recursive-design wild bootstrap and the pairwise bootstrap. In a simulation study all three procedures tend to be more accurate in small samples than the conventional large-sample approximation based on robust standard errors. In contrast, standard residual-based bootstrap methods for models with i.i.d. errors may be very inaccurate if the i.i.d. assumption is violated. We conclude that in many empirical applications the proposed robust bootstrap procedures should routinely replace conventional bootstrap procedures for autoregressions based on the i.i.d. error assumption.
Resumo:
We propose methods for testing hypotheses of non-causality at various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in detail the case of VAR models and we propose linear methods based on running vector autoregressions at different horizons. While the hypotheses considered are nonlinear, the proposed methods only require linear regression techniques as well as standard Gaussian asymptotic distributional theory. Bootstrap procedures are also considered. For the case of integrated processes, we propose extended regression methods that avoid nonstandard asymptotics. The methods are applied to a VAR model of the U.S. economy.
Resumo:
Affiliation: Claudia Kleinman, Nicolas Rodrigue & Hervé Philippe : Département de biochimie, Faculté de médecine, Université de Montréal
Resumo:
The attached file is created with Scientific Workplace Latex
Resumo:
Durant la dernière décennie, les développements technologiques en radiothérapie ont transformé considérablement les techniques de traitement. Les nouveaux faisceaux non standard améliorent la conformité de la dose aux volumes cibles, mais également complexifient les procédures dosimétriques. Puisque des études récentes ont démontré l’invalidité de ces protocoles actuels avec les faisceaux non standard, un nouveau protocole applicable à la dosimétrie de référence de ces faisceaux est en préparation par l’IAEA-AAPM. Le but premier de cette étude est de caractériser les facteurs responsables des corrections non unitaires en dosimétrie des faisceaux non standard, et ainsi fournir des solutions conceptuelles afin de minimiser l’ordre de grandeur des corrections proposées dans le nouveau formalisme de l’IAEA-AAPM. Le deuxième but de l’étude est de construire des méthodes servant à estimer les incertitudes d’une manière exacte en dosimétrie non standard, et d’évaluer les niveaux d’incertitudes réalistes pouvant être obtenus dans des situations cliniques. Les résultats de l’étude démontrent que de rapporter la dose au volume sensible de la chambre remplie d’eau réduit la correction d’environ la moitié sous de hauts gradients de dose. Une relation théorique entre le facteur de correction de champs non standard idéaux et le facteur de gradient du champ de référence est obtenue. En dosimétrie par film radiochromique, des niveaux d’incertitude de l’ordre de 0.3% sont obtenus par l’application d’une procédure stricte, ce qui démontre un intérêt potentiel pour les mesures de faisceaux non standard. Les résultats suggèrent également que les incertitudes expérimentales des faisceaux non standard doivent être considérées sérieusement, que ce soit durant les procédures quotidiennes de vérification ou durant les procédures de calibration. De plus, ces incertitudes pourraient être un facteur limitatif dans la nouvelle génération de protocoles.
Resumo:
Les séquences protéiques naturelles sont le résultat net de l’interaction entre les mécanismes de mutation, de sélection naturelle et de dérive stochastique au cours des temps évolutifs. Les modèles probabilistes d’évolution moléculaire qui tiennent compte de ces différents facteurs ont été substantiellement améliorés au cours des dernières années. En particulier, ont été proposés des modèles incorporant explicitement la structure des protéines et les interdépendances entre sites, ainsi que les outils statistiques pour évaluer la performance de ces modèles. Toutefois, en dépit des avancées significatives dans cette direction, seules des représentations très simplifiées de la structure protéique ont été utilisées jusqu’à présent. Dans ce contexte, le sujet général de cette thèse est la modélisation de la structure tridimensionnelle des protéines, en tenant compte des limitations pratiques imposées par l’utilisation de méthodes phylogénétiques très gourmandes en temps de calcul. Dans un premier temps, une méthode statistique générale est présentée, visant à optimiser les paramètres d’un potentiel statistique (qui est une pseudo-énergie mesurant la compatibilité séquence-structure). La forme fonctionnelle du potentiel est par la suite raffinée, en augmentant le niveau de détails dans la description structurale sans alourdir les coûts computationnels. Plusieurs éléments structuraux sont explorés : interactions entre pairs de résidus, accessibilité au solvant, conformation de la chaîne principale et flexibilité. Les potentiels sont ensuite inclus dans un modèle d’évolution et leur performance est évaluée en termes d’ajustement statistique à des données réelles, et contrastée avec des modèles d’évolution standards. Finalement, le nouveau modèle structurellement contraint ainsi obtenu est utilisé pour mieux comprendre les relations entre niveau d’expression des gènes et sélection et conservation de leur séquence protéique.
Resumo:
L'hétérogénéité de réponses dans un groupe de patients soumis à un même régime thérapeutique doit être réduite au cours d'un traitement ou d'un essai clinique. Deux approches sont habituellement utilisées pour atteindre cet objectif. L'une vise essentiellement à construire une observance active. Cette approche se veut interactive et fondée sur l'échange ``médecin-patient '', ``pharmacien-patient'' ou ``vétérinaire-éleveurs''. L'autre plutôt passive et basée sur les caractéristiques du médicament, vise à contrôler en amont cette irrégularité. L'objectif principal de cette thèse était de développer de nouvelles stratégies d'évaluation et de contrôle de l'impact de l'irrégularité de la prise du médicament sur l'issue thérapeutique. Plus spécifiquement, le premier volet de cette recherche consistait à proposer des algorithmes mathématiques permettant d'estimer efficacement l'effet des médicaments dans un contexte de variabilité interindividuelle de profils pharmacocinétiques (PK). Cette nouvelle méthode est fondée sur l'utilisation concommitante de données \textit{in vitro} et \textit{in vivo}. Il s'agit de quantifier l'efficience ( c-à-dire efficacité plus fluctuation de concentrations \textit{in vivo}) de chaque profil PK en incorporant dans les modèles actuels d'estimation de l'efficacité \textit{in vivo}, la fonction qui relie la concentration du médicament de façon \textit{in vitro} à l'effet pharmacodynamique. Comparativement aux approches traditionnelles, cette combinaison de fonction capte de manière explicite la fluctuation des concentrations plasmatiques \textit{in vivo} due à la fonction dynamique de prise médicamenteuse. De plus, elle soulève, à travers quelques exemples, des questions sur la pertinence de l'utilisation des indices statiques traditionnels ($C_{max}$, $AUC$, etc.) d'efficacité comme outil de contrôle de l'antibiorésistance. Le deuxième volet de ce travail de doctorat était d'estimer les meilleurs temps d'échantillonnage sanguin dans une thérapie collective initiée chez les porcs. Pour ce faire, nous avons développé un modèle du comportement alimentaire collectif qui a été par la suite couplé à un modèle classique PK. À l'aide de ce modèle combiné, il a été possible de générer un profil PK typique à chaque stratégie alimentaire particulière. Les données ainsi générées, ont été utilisées pour estimer les temps d'échantillonnage appropriés afin de réduire les incertitudes dues à l'irrégularité de la prise médicamenteuse dans l'estimation des paramètres PK et PD . Parmi les algorithmes proposés à cet effet, la méthode des médianes semble donner des temps d'échantillonnage convenables à la fois pour l'employé et pour les animaux. Enfin, le dernier volet du projet de recherche a consisté à proposer une approche rationnelle de caractérisation et de classification des médicaments selon leur capacité à tolérer des oublis sporadiques. Méthodologiquement, nous avons, à travers une analyse globale de sensibilité, quantifié la corrélation entre les paramètres PK/PD d'un médicament et l'effet d'irrégularité de la prise médicamenteuse. Cette approche a consisté à évaluer de façon concomitante l'influence de tous les paramètres PK/PD et à prendre en compte, par la même occasion, les relations complexes pouvant exister entre ces différents paramètres. Cette étude a été réalisée pour les inhibiteurs calciques qui sont des antihypertenseurs agissant selon un modèle indirect d'effet. En prenant en compte les valeurs des corrélations ainsi calculées, nous avons estimé et proposé un indice comparatif propre à chaque médicament. Cet indice est apte à caractériser et à classer les médicaments agissant par un même mécanisme pharmacodynamique en terme d'indulgence à des oublis de prises médicamenteuses. Il a été appliqué à quatre inhibiteurs calciques. Les résultats obtenus étaient en accord avec les données expérimentales, traduisant ainsi la pertinence et la robustesse de cette nouvelle approche. Les stratégies développées dans ce projet de doctorat sont essentiellement fondées sur l'analyse des relations complexes entre l'histoire de la prise médicamenteuse, la pharmacocinétique et la pharmacodynamique. De cette analyse, elles sont capables d'évaluer et de contrôler l'impact de l'irrégularité de la prise médicamenteuse avec une précision acceptable. De façon générale, les algorithmes qui sous-tendent ces démarches constitueront sans aucun doute, des outils efficients dans le suivi et le traitement des patients. En outre, ils contribueront à contrôler les effets néfastes de la non-observance au traitement par la mise au point de médicaments indulgents aux oublis
Évaluation de l'impact clinique et économique du développement d'un traitement pour la schizophrénie
Resumo:
Contexte : Les stratégies pharmacologiques pour traiter la schizophrénie reçoivent une attention croissante due au développement de nouvelles pharmacothérapies plus efficaces, mieux tolérées mais plus coûteuses. La schizophrénie est une maladie chronique présentant différents états spécifiques et définis par leur sévérité. Objectifs : Ce programme de recherche vise à: 1) Évaluer les facteurs associés au risque d'être dans un état spécifique de la schizophrénie, afin de construire les fonctions de risque de la modélisation du cours naturel de la schizophrénie; 2) Développer et valider un modèle de Markov avec microsimulations de Monte-Carlo, afin de simuler l'évolution naturelle des patients qui sont nouvellement diagnostiqués pour la schizophrénie, en fonction du profil individuel des facteurs de risque; 3) Estimer le coût direct de la schizophrénie (pour les soins de santé et autres non reliés aux soins de santé) dans la perspective gouvernementale et simuler l’impact clinique et économique du développement d’un traitement dans une cohorte de patients nouvellement diagnostiqués avec la schizophrénie, suivis pendant les cinq premières années post-diagnostic. Méthode : Pour le premier objectif de ce programme de recherche, un total de 14 320 patients nouvellement diagnostiqués avec la schizophrénie ont été identifiés dans les bases de données de la RAMQ et de Med-Echo. Les six états spécifiques de la schizophrénie ont été définis : le premier épisode (FE), l'état de dépendance faible (LDS), l’état de dépendance élevée (HDS), l’état stable (Stable), l’état de bien-être (Well) et l'état de décès (Death). Pour évaluer les facteurs associés au risque de se trouver dans chacun des états spécifiques de la schizophrénie, nous avons construit 4 fonctions de risque en se basant sur l'analyse de risque proportionnel de Cox pour des risques compétitifs. Pour le deuxième objectif, nous avons élaboré et validé un modèle de Markov avec microsimulations de Monte-Carlo intégrant les six états spécifiques de la schizophrénie. Dans le modèle, chaque sujet avait ses propres probabilités de transition entre les états spécifiques de la schizophrénie. Ces probabilités ont été estimées en utilisant la méthode de la fonction d'incidence cumulée. Pour le troisième objectif, nous avons utilisé le modèle de Markov développé précédemment. Ce modèle inclut les coûts directs de soins de santé, estimés en utilisant les bases de données de la Régie de l'assurance maladie du Québec et Med-Echo, et les coûts directs autres que pour les soins de santé, estimés à partir des enquêtes et publications de Statistique Canada. Résultats : Un total de 14 320 personnes nouvellement diagnostiquées avec la schizophrénie ont été identifiées dans la cohorte à l'étude. Le suivi moyen des sujets était de 4,4 (± 2,6) ans. Parmi les facteurs associés à l’évolution de la schizophrénie, on peut énumérer l’âge, le sexe, le traitement pour la schizophrénie et les comorbidités. Après une période de cinq ans, nos résultats montrent que 41% des patients seront considérés guéris, 13% seront dans un état stable et 3,4% seront décédés. Au cours des 5 premières années après le diagnostic de schizophrénie, le coût direct moyen de soins de santé et autres que les soins de santé a été estimé à 36 701 $ canadiens (CAN) (95% CI: 36 264-37 138). Le coût des soins de santé a représenté 56,2% du coût direct, le coût de l'aide sociale 34,6% et le coût associé à l’institutionnalisation dans les établissements de soins de longue durée 9,2%. Si un nouveau traitement était disponible et offrait une augmentation de 20% de l'efficacité thérapeutique, le coût direct des soins de santé et autres que les soins de santé pourrait être réduit jusqu’à 14,2%. Conclusion : Nous avons identifié des facteurs associés à l’évolution de la schizophrénie. Le modèle de Markov que nous avons développé est le premier modèle canadien intégrant des probabilités de transition ajustées pour le profil individuel des facteurs de risque, en utilisant des données réelles. Le modèle montre une bonne validité interne et externe. Nos résultats indiquent qu’un nouveau traitement pourrait éventuellement réduire les hospitalisations et le coût associé aux établissements de soins de longue durée, augmenter les chances des patients de retourner sur le marché du travail et ainsi contribuer à la réduction du coût de l'aide sociale.
Approximation de la distribution a posteriori d'un modèle Gamma-Poisson hiérarchique à effets mixtes
Resumo:
La méthode que nous présentons pour modéliser des données dites de "comptage" ou données de Poisson est basée sur la procédure nommée Modélisation multi-niveau et interactive de la régression de Poisson (PRIMM) développée par Christiansen et Morris (1997). Dans la méthode PRIMM, la régression de Poisson ne comprend que des effets fixes tandis que notre modèle intègre en plus des effets aléatoires. De même que Christiansen et Morris (1997), le modèle étudié consiste à faire de l'inférence basée sur des approximations analytiques des distributions a posteriori des paramètres, évitant ainsi d'utiliser des méthodes computationnelles comme les méthodes de Monte Carlo par chaînes de Markov (MCMC). Les approximations sont basées sur la méthode de Laplace et la théorie asymptotique liée à l'approximation normale pour les lois a posteriori. L'estimation des paramètres de la régression de Poisson est faite par la maximisation de leur densité a posteriori via l'algorithme de Newton-Raphson. Cette étude détermine également les deux premiers moments a posteriori des paramètres de la loi de Poisson dont la distribution a posteriori de chacun d'eux est approximativement une loi gamma. Des applications sur deux exemples de données ont permis de vérifier que ce modèle peut être considéré dans une certaine mesure comme une généralisation de la méthode PRIMM. En effet, le modèle s'applique aussi bien aux données de Poisson non stratifiées qu'aux données stratifiées; et dans ce dernier cas, il comporte non seulement des effets fixes mais aussi des effets aléatoires liés aux strates. Enfin, le modèle est appliqué aux données relatives à plusieurs types d'effets indésirables observés chez les participants d'un essai clinique impliquant un vaccin quadrivalent contre la rougeole, les oreillons, la rub\'eole et la varicelle. La régression de Poisson comprend l'effet fixe correspondant à la variable traitement/contrôle, ainsi que des effets aléatoires liés aux systèmes biologiques du corps humain auxquels sont attribués les effets indésirables considérés.
Resumo:
This paper studies the application of the simulated method of moments (SMM) for the estimation of nonlinear dynamic stochastic general equilibrium (DSGE) models. Monte Carlo analysis is employed to examine the small-sample properties of SMM in specifications with different curvature. Results show that SMM is computationally efficient and delivers accurate estimates, even when the simulated series are relatively short. However, asymptotic standard errors tend to overstate the actual variability of the estimates and, consequently, statistical inference is conservative. A simple strategy to incorporate priors in a method of moments context is proposed. An empirical application to the macroeconomic effects of rare events indicates that negatively skewed productivity shocks induce agents to accumulate additional capital and can endogenously generate asymmetric business cycles.
Resumo:
Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont des outils très populaires pour l’échantillonnage de lois de probabilité complexes et/ou en grandes dimensions. Étant donné leur facilité d’application, ces méthodes sont largement répandues dans plusieurs communautés scientifiques et bien certainement en statistique, particulièrement en analyse bayésienne. Depuis l’apparition de la première méthode MCMC en 1953, le nombre de ces algorithmes a considérablement augmenté et ce sujet continue d’être une aire de recherche active. Un nouvel algorithme MCMC avec ajustement directionnel a été récemment développé par Bédard et al. (IJSS, 9 :2008) et certaines de ses propriétés restent partiellement méconnues. L’objectif de ce mémoire est de tenter d’établir l’impact d’un paramètre clé de cette méthode sur la performance globale de l’approche. Un second objectif est de comparer cet algorithme à d’autres méthodes MCMC plus versatiles afin de juger de sa performance de façon relative.