888 resultados para Semigroups of Operators
Resumo:
Many-body systems of composite hadrons are characterized by processes that involve the simultaneous presence of hadrons and their constituents. We briefly review several methods that have been devised to study such systems and present a novel method that is based on the ideas of mapping between physical and ideal Fock spaces. The method, known as the Fock-Tani representation, was invented years ago in the context of atomic physics problems and was recently extended to hadronic physics. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, Hermitian Hamiltonians with a clear physical interpretation are obtained. The use of the method in connection with the linked-cluster formalism to describe short-range correlations and quark deconfinement effects in nuclear matter is discussed. As an application of the method, an effective nucleon-nucleon interaction is derived from a constituent quark model and used to obtain the equation of state of nuclear matter in the Hartree-Fock approximation.
Resumo:
A quantizable action has recently been proposed for the superstring in an AdS(5) x S-5 background with Ramond-Ramond flux. In this paper we construct physical vertex operators corresponding to on-shell fluctuations around the AdS(5) x S-5 background. The structure of these AdS(5) x S-5 vertex operators closely resembles the structure of the massless vertex operators in a flat background. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Using the U(4) formalism developed ten years ago, the worldsheet action for the superstring in Ramond-Ramond plane wave backgrounds is expressed in a manifestly N = (2, 2) superconformally invariant manner. This simplifies the construction of consistent Ramond-Ramond plane wave backgrounds and eliminates the problems associated with light-cone interaction point operators.
Resumo:
After reviewing the Green-Schwarz superstring using the approach of Siegel, the superstring is covariantly quantized by constructing a BRST operator from the fermionic constraints and a bosonic pure spinor ghost variable. Physical massless vertex operators are constructed and, for the first time, N-point tree amplitudes are computed in a manifestly ten-dimensional super-Poincare covariant manner. Quantization can be generalized to curved supergravity backgrounds and the vertex operator for fluctuations around AdS(5) x S-5 is explicitly constructed.
Resumo:
A mapping technique is used to derive in the context of constituent quark models effective Hamiltonians that involve explicit hadron degrees of freedom. The technique is based on the ideas of mapping between physical and ideal Fock spaces and shares similarities with the quasiparticle method of Weinberg. Starting with the Fock-space representation of single-hadron states, a change of representation is implemented by a unitary transformation such that composites are redescribed by elementary Bose and Fermi field operators in an extended Fock space. When the unitary transformation is applied to the microscopic quark Hamiltonian, effective, hermitian Hamiltonians with a clear physical interpretation are obtained. Applications and comparisons with other composite-particle formalisms of the recent literature are made using the nonrelativistic quark model. (C) 1998 Academic Press.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
By means of a well-established algebraic framework, Rogers-Szego functions associated with a circular geometry in the complex plane are introduced in the context of q-special functions, and their properties are discussed in detail. The eigenfunctions related to the coherent and phase states emerge from this formalism as infinite expansions of Rogers-Szego functions, the coefficients being determined through proper eigenvalue equations in each situation. Furthermore, a complementary study on the Robertson-Schrodinger and symmetrical uncertainty relations for the cosine, sine and nondeformed number operators is also conducted, corroborating, in this way, certain features of q-deformed coherent states.
Resumo:
A U(2,2 vertical bar 4)-invariant A-model constructed from fermionic superfields has recently been proposed as a sigma model for the superstring on AdS(5) X S(5). After explaining the relation of this A-model with the pure spinor formalism, the A-model action is expressed as a gauged linear sigma model. In the zero radius limit, the Coulomb branch of this sigma model is interpreted as D-brane holes which are related to gauge-invariant N = 4 d=4 super-Yang-Mills operators. As in the worldsheet derivation of open-closed duality for Chem-Simons theory, this construction may lead to a worldsheet derivation of the Maldacena conjecture. Intriguing connections to the twistorial formulation of N = 4 Yang-Mills are also noted. (Republished with permission of JHEP from JHEP 0803:031, 2008.)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
For eta >= 0, we consider a family of damped wave equations u(u) + eta Lambda 1/2u(t) + au(t) + Lambda u = f(u), t > 0, x is an element of Omega subset of R-N, where -Lambda denotes the Laplacian with zero Dirichlet boundary condition in L-2(Omega). For a dissipative nonlinearity f satisfying a suitable growth restrictions these equations define on the phase space H-0(1)(Omega) x L-2(Omega) semigroups {T-eta(t) : t >= 0} which have global attractors A(eta) eta >= 0. We show that the family {A(eta)}(eta >= 0), behaves upper and lower semi-continuously as the parameter eta tends to 0(+).