789 resultados para Semi-arid Regions
Resumo:
This paper proposes a semi-supervised intelligent visual surveillance system to exploit the information from multi-camera networks for the monitoring of people and vehicles. Modules are proposed to perform critical surveillance tasks including: the management and calibration of cameras within a multi-camera network; tracking of objects across multiple views; recognition of people utilising biometrics and in particular soft-biometrics; the monitoring of crowds; and activity recognition. Recent advances in these computer vision modules and capability gaps in surveillance technology are also highlighted.
Resumo:
Vehicular traffic in urban areas may adversely affect urban water quality through the build-up of traffic generated semi and non volatile organic compounds (SVOCs and NVOCs) on road surfaces. The characterisation of the build-up processes is the key to developing mitigation measures for the removal of such pollutants from urban stormwater. An in-depth analysis of the build-up of SVOCs and NVOCs was undertaken in the Gold Coast region in Australia. Principal Component Analysis (PCA) and Multicriteria Decision tools such as PROMETHEE and GAIA were employed to understand the SVOC and NVOC build-up under combined traffic scenarios of low, moderate, and high traffic in different land uses. It was found that congestion in the commercial areas and use of lubricants and motor oils in the industrial areas were the main sources of SVOCs and NVOCs on urban roads, respectively. The contribution from residential areas to the build-up of such pollutants was hardly noticeable. It was also revealed through this investigation that the target SVOCs and NVOCs were mainly attached to particulate fractions of 75 to 300 µm whilst the redistribution of coarse fractions due to vehicle activity mainly occurred in the >300 µm size range. Lastly, under combined traffic scenario, moderate traffic with average daily traffic ranging from 2300 to 5900 and average congestion of 0.47 was found to dominate SVOC and NVOC build-up on roads.
Resumo:
Information and communication technologies (ICTs) are essential components of the knowledge economy, and have an immense complementary role in innovation, education, knowledge creation, and relations with government, civil society, and business within city regions. The ability to create, distribute, and exploit knowledge has become a major source of competitive advantage, wealth creation, and improvements in the new regional policies. Growing impact of ICTs on the economy and society, rapid application of recent scientific advances in new products and processes, shifting to more knowledge-intensive industry and services, and rising skill requirements have become crucial concepts for urban and regional competitiveness. Therefore, harnessing ICTs for knowledge-based urban development (KBUD) has a significant impact on urban and regional growth (Yigitcanlar, 2005). In this sense, e-region is a novel concept utilizing ICTs for regional development. Since the Helsinki European Council announced Turkey as a candidate for European Union (EU) membership in 1999, the candidacy has accelerated the speed of regional policy enhancements and adoption of the European regional policy standards. These enhancements and adoption include the generation of a new regional spatial division, NUTS-II statistical regions; a new legislation on the establishment of regional development agencies (RDAs); and new orientations in the field of high education, science, and technology within the framework of the EU’s Lisbon Strategy and the Bologna Process. The European standards posed an ambitious new agenda in the development and application of contemporary regional policy in Turkey (Bilen, 2005). In this sense, novel regional policies in Turkey necessarily endeavor to include information society objectives through efficient use of new technologies such as ICTs. Such a development seeks to be based on tangible assets of the region (Friedmann, 2006) as well as the best practices deriving from grounding initiatives on urban and local levels. These assets provide the foundation of an e-region that harnesses regional development in an information society context. With successful implementations, the Marmara region’s local governments in Turkey are setting the benchmark for the country in the implementation of spatial information systems and e-governance, and moving toward an e-region. Therefore, this article aims to shed light on organizational and regional realities of recent practices of ICT applications and their supply instruments based on evidence from selected local government organizations in the Marmara region. This article also exemplifies challenges and opportunities of the region in moving toward an e-region and provides a concise review of different ICT applications and strategies in a broader urban and regional context. The article is organized in three parts. The following section scrutinizes the e-region framework and the role of ICTs in regional development. Then, Marmara’s opportunities and challenges in moving toward an e-region are discussed in the context of ICT applications and their supply instruments based on public-sector projects, policies, and initiatives. Subsequently, the last section discusses conclusions and prospective research.
Resumo:
Due to the limitation of current condition monitoring technologies, the estimates of asset health states may contain some uncertainties. A maintenance strategy ignoring this uncertainty of asset health state can cause additional costs or downtime. The partially observable Markov decision process (POMDP) is a commonly used approach to derive optimal maintenance strategies when asset health inspections are imperfect. However, existing applications of the POMDP to maintenance decision-making largely adopt the discrete time and state assumptions. The discrete-time assumption requires the health state transitions and maintenance activities only happen at discrete epochs, which cannot model the failure time accurately and is not cost-effective. The discrete health state assumption, on the other hand, may not be elaborate enough to improve the effectiveness of maintenance. To address these limitations, this paper proposes a continuous state partially observable semi-Markov decision process (POSMDP). An algorithm that combines the Monte Carlo-based density projection method and the policy iteration is developed to solve the POSMDP. Different types of maintenance activities (i.e., inspections, replacement, and imperfect maintenance) are considered in this paper. The next maintenance action and the corresponding waiting durations are optimized jointly to minimize the long-run expected cost per unit time and availability. The result of simulation studies shows that the proposed maintenance optimization approach is more cost-effective than maintenance strategies derived by another two approximate methods, when regular inspection intervals are adopted. The simulation study also shows that the maintenance cost can be further reduced by developing maintenance strategies with state-dependent maintenance intervals using the POSMDP. In addition, during the simulation studies the proposed POSMDP shows the ability to adopt a cost-effective strategy structure when multiple types of maintenance activities are involved.
Resumo:
As the need for concepts such as cancellation and OR-joins occurs naturally in business scenarios, comprehensive support in a workflow language is desirable. However, there is a clear trade-off between the expressive power of a language (i.e., introducing complex constructs such as cancellation and OR-joins) and ease of verification. When a workflow contains a large number of tasks and involves complex control flow dependencies, verification can take too much time or it may even be impossible. There are a number of different approaches to deal with this complexity. Reducing the size of the workflow, while preserving its essential properties with respect to a particular analysis problem, is one such approach. In this paper, we present a set of reduction rules for workflows with cancellation regions and OR-joins and demonstrate how they can be used to improve the efficiency of verification. Our results are presented in the context of the YAWL workflow language.
Resumo:
Kernel-based learning algorithms work by embedding the data into a Euclidean space, and then searching for linear relations among the embedded data points. The embedding is performed implicitly, by specifying the inner products between each pair of points in the embedding space. This information is contained in the so-called kernel matrix, a symmetric and positive definite matrix that encodes the relative positions of all points. Specifying this matrix amounts to specifying the geometry of the embedding space and inducing a notion of similarity in the input space -- classical model selection problems in machine learning. In this paper we show how the kernel matrix can be learned from data via semi-definite programming (SDP) techniques. When applied to a kernel matrix associated with both training and test data this gives a powerful transductive algorithm -- using the labelled part of the data one can learn an embedding also for the unlabelled part. The similarity between test points is inferred from training points and their labels. Importantly, these learning problems are convex, so we obtain a method for learning both the model class and the function without local minima. Furthermore, this approach leads directly to a convex method to learn the 2-norm soft margin parameter in support vector machines, solving another important open problem. Finally, the novel approach presented in the paper is supported by positive empirical results.
Resumo:
Background: Strategies for cancer reduction and management are targeted at both individual and area levels. Area-level strategies require careful understanding of geographic differences in cancer incidence, in particular the association with factors such as socioeconomic status, ethnicity and accessibility. This study aimed to identify the complex interplay of area-level factors associated with high area-specific incidence of Australian priority cancers using a classification and regression tree (CART) approach. Methods: Area-specific smoothed standardised incidence ratios were estimated for priority-area cancers across 478 statistical local areas in Queensland, Australia (1998-2007, n=186,075). For those cancers with significant spatial variation, CART models were used to identify whether area-level accessibility, socioeconomic status and ethnicity were associated with high area-specific incidence. Results: The accessibility of a person’s residence had the most consistent association with the risk of cancer diagnosis across the specific cancers. Many cancers were likely to have high incidence in more urban areas, although male lung cancer and cervical cancer tended to have high incidence in more remote areas. The impact of socioeconomic status and ethnicity on these associations differed by type of cancer. Conclusions: These results highlight the complex interactions between accessibility, socioeconomic status and ethnicity in determining cancer incidence risk.
Resumo:
Single particle analysis (SPA) coupled with high-resolution electron cryo-microscopy is emerging as a powerful technique for the structure determination of membrane protein complexes and soluble macromolecular assemblies. Current estimates suggest that ∼104–105 particle projections are required to attain a 3 Å resolution 3D reconstruction (symmetry dependent). Selecting this number of molecular projections differing in size, shape and symmetry is a rate-limiting step for the automation of 3D image reconstruction. Here, we present SwarmPS, a feature rich GUI based software package to manage large scale, semi-automated particle picking projects. The software provides cross-correlation and edge-detection algorithms. Algorithm-specific parameters are transparently and automatically determined through user interaction with the image, rather than by trial and error. Other features include multiple image handling (∼102), local and global particle selection options, interactive image freezing, automatic particle centering, and full manual override to correct false positives and negatives. SwarmPS is user friendly, flexible, extensible, fast, and capable of exporting boxed out projection images, or particle coordinates, compatible with downstream image processing suites.
Resumo:
Since manually constructing domain-specific sentiment lexicons is extremely time consuming and it may not even be feasible for domains where linguistic expertise is not available. Research on the automatic construction of domain-specific sentiment lexicons has become a hot topic in recent years. The main contribution of this paper is the illustration of a novel semi-supervised learning method which exploits both term-to-term and document-to-term relations hidden in a corpus for the construction of domain specific sentiment lexicons. More specifically, the proposed two-pass pseudo labeling method combines shallow linguistic parsing and corpusbase statistical learning to make domain-specific sentiment extraction scalable with respect to the sheer volume of opinionated documents archived on the Internet these days. Another novelty of the proposed method is that it can utilize the readily available user-contributed labels of opinionated documents (e.g., the user ratings of product reviews) to bootstrap the performance of sentiment lexicon construction. Our experiments show that the proposed method can generate high quality domain-specific sentiment lexicons as directly assessed by human experts. Moreover, the system generated domain-specific sentiment lexicons can improve polarity prediction tasks at the document level by 2:18% when compared to other well-known baseline methods. Our research opens the door to the development of practical and scalable methods for domain-specific sentiment analysis.
Resumo:
This paper seeks to investigate the link between the objective regional opportunity structure (captured by regional data) and individuals’ engagement in different stages in the venture creation process (intention to start a business and engagement in nascent entrepreneurship). We further investigate pathways through which a favourable regional environment could affect entrepreneurial intentions and the propensity to be a nascent entrepreneur. We combine individual level GEM-data for Western Germany with regional level data from the statistical office and use multi-level analysis to test our hypotheses. We find support for our contention that a favourable regional opportunity structure affects entrepreneurial intentions and engagement. As pathways between the region and individual behaviour serve the individual perception of founding opportunities and the individual social capital.