988 resultados para Self-Optimization
Resumo:
The random early detection (RED) technique has seen a lot of research over the years. However, the functional relationship between RED performance and its parameters viz,, queue weight (omega(q)), marking probability (max(p)), minimum threshold (min(th)) and maximum threshold (max(th)) is not analytically availa ble. In this paper, we formulate a probabilistic constrained optimization problem by assuming a nonlinear relationship between the RED average queue length and its parameters. This problem involves all the RED parameters as the variables of the optimization problem. We use the barrier and the penalty function approaches for its Solution. However (as above), the exact functional relationship between the barrier and penalty objective functions and the optimization variable is not known, but noisy samples of these are available for different parameter values. Thus, for obtaining the gradient and Hessian of the objective, we use certain recently developed simultaneous perturbation stochastic approximation (SPSA) based estimates of these. We propose two four-timescale stochastic approximation algorithms based oil certain modified second-order SPSA updates for finding the optimum RED parameters. We present the results of detailed simulation experiments conducted over different network topologies and network/traffic conditions/settings, comparing the performance of Our algorithms with variants of RED and a few other well known adaptive queue management (AQM) techniques discussed in the literature.
Resumo:
A number of macroporous metal oxide foams were prepared through self-sustained combustion reactions starting from dough made of the corresponding metal nitrate, urea and starch. The nitrate ion acts as an oxidizing agent, urea as fuel and starch as an organic binder. The metal oxide foams are characterized by scanning electron microscopy and powder X-ray diffraction.
Resumo:
Some of the well known formulations for topology optimization of compliant mechanisms could lead to lumped compliant mechanisms. In lumped compliance, most of the elastic deformation in a mechanism occurs at few points, while rest of the mechanism remains more or less rigid. Such points are referred to as point-flexures. It has been noted in literature that high relative rotation is associated with point-flexures. In literature we also find a formulation of local constraint on relative rotations to avoid lumped compliance. However it is well known that a global constraint is easier to handle than a local constraint, by a numerical optimization algorithm. The current work presents a way of putting global constraint on relative rotations. This constraint is also simpler to implement since it uses linearized rotation at the center of finite-elements, to compute relative rotations. I show the results obtained by using this constraint oil the following benchmark problems - displacement inverter and gripper.
Resumo:
The self-assembly reaction of a cis-blocked 90° square planar metal acceptor with a symmetrical linear flexible linker is expected to yield a [4 + 4] self-assembled square, a [3 + 3] assembled triangle, or a mixture of these.However, if the ligand is a nonsymmetrical ambidentate, it is expected to form a complex mixture comprising several linkage isomeric squares and triangles as a result of different connectivities of the ambidentate linker. We report instead that the reaction of a 90° acceptor cis-(dppf)Pd(OTf)2 [where dppf ) 1,1′-bis(diphenylphosphino)- ferrocene] with an equimolar amount of the ambidentate unsymmetrical ligand Na-isonicotinate unexpectedly yields a mixture of symmetrical triangles and squares in the solution. An analogous reaction using cis-(tmen)Pd(NO3)2 instead of cis-(dppf)Pd(OTf)2 also produced a mixture of symmetrical triangles and squares in the solution. In both cases the square was isolated as the sole product in the solid state, which was characterized by a single crystal structure analysis. The equilibrium between the triangle and the square in the solution is governed by the enthalpic and entropic contributions. The former parameter favors the formation of the square due to less strain in the structure whereas the latter one favors the formation of triangles due to the formation of more triangles from the same number of starting linkers. The effects of temperature and concentration on the equilibria have been studied by NMR techniques. This represents the first report on the study of square-triangle equilibria obtained using a nonsymmetric ambidentate linker. Detail NMR spectroscopy along with the ESI-mass spectrometry unambiguously identified the components in the mixture while the X-ray structure analysis determined the solid-state structure.
Resumo:
Synthetic routes leading to 12 L-phenylalanine based mono- and bipolar derivatives (1-12) and an in-depth study of their structure-property relationship with respect to gelation have been presented. These include monopolar systems such as N-[(benzyloxy)carbonyl]-L-phenylalanine-N-alkylamides and the corresponding bipolar derivatives with flexible and rigid spacers such as with 1,12-diaminododecane and 4,4'-diaminodiphenylmethane, respectively. The two ends of the latter have been functionalized with N-[(benzyloxy)carbonyl]-L-phenylalanine units via amide connection. Another bipolar molecule was synthesized in which the middle portion of the hydrocarbon segment contained polymerizable diacetylene unit. To ascertain the role of the presence of urethane linkages in the gelator molecule protected L-phenylalanine derivatives were also synthesized in which the (benzyloxy)carbonyl group has been replaced with (tert-butyloxy)carbonyl, acetyl, and benzoyl groups, respectively. Upon completion of the synthesis and adequate characterization of the newly described molecules, we examined the aggregation and gelation properties of each of them in a number of solvents and their mixtures. Optical microscopy and electron microscopy further characterized the systems that formed gels. Few representative systems, which showed excellent gelation behavior was, further examined by FT-IR, calorimetric, and powder X-ray diffraction studies. To explain the possible reasons for gelation, the results of molecular modeling and energy-minimization studies were also included. Taken together these results demonstrate the importance of the presence of (benzyloxy)carbonyl unit, urethane and secondary amide linkages, chiral purities of the headgroup and the length of the alkyl chain of the hydrophobic segment as critical determinants toward effective gelation.
Pedestrian self-reported exposure to distraction by smart phones while walking and crossing the road
Resumo:
Pedestrian crashes account for approximately 14% of road fatalities in Australia. Crossing the road, while a minor part of total walking, presents the highest crash risk because of potential interaction with motor vehicles. Crash risk is elevated by pedestrian illegal use of the road, which may be widespread (e.g. 20% of crossings at signalised intersections at a sample of sites, Brisbane) and enforcement is rare. Effective road crossing requires integration of multiple skills and judgements, any of which can be hindered by distraction. Observational studies suggest that pedestrians are increasingly likely to ‘multitask’, using mobile technology for entertainment and communication, elevating the risk of distraction while crossing. To investigate this, intercept interviews were conducted with a convenience sample of 211 pedestrians aged 18-65 years in Brisbane CBD. Self-reported frequency of using a smart phone for activities at two levels of distraction: cognitive only (voice calls); or cognitive and visual (text messages, internet access) while walking or crossing the road was collected. Results indicated that smart phone use for potentially distracting activities while walking and while crossing the road was high, especially among 18-30 year olds, who were significantly more likely than 31-44yo or 45-65yo to report smart phone use while crossing the road. For 18-30yo and the higher risk activity of crossing the road, 32% texted at high frequency levels and 27% used internet at high frequency levels. Risky levels of distracted crossing appear to be a growing safety issue for 18-30yo, with greater attention to appropriate interventions needed.
Resumo:
Introduction Hospitalisation for percutaneous coronary intervention (PCI) is often short, with limited nurse-teaching time and poor information absorption. Currently, patients are discharged home only to wait up to 4-8 weeks to commence a secondary prevention program and visit their cardiologist. This wait is an anxious time for patients and confidence or self-efficacy (SE) to self-manage may be low. Objectives To determine the effects of a nurse-led, educational intervention on participant SE and anxiety in the early post-discharge period. Methods A pilot study was undertaken as a randomised controlled clinical trial. Thirty-three participants were recruited, with n=13 randomised to the intervention group. A face-to-face, nurse-led, educational intervention was undertaken within the first 5-7 days post-discharge. Intervention group participants received standard post-discharge education, physical assessment, with a strong focus on the emotional impact of cardiovascular events and PCI. Early reiteration of post-discharge education was offered, along with health professional support with the aim to increase patients’ SE and to effectively manage their post-discharge health and well being, as well as anxieties. Self-efficacy to return to normal activities was measured to gauge participants’ abilities to manage post-PCI after attending the intervention using the cardiac self-efficacy (CSE) scale. State and trait anxiety was also measured using the State-Trait Anxiety Inventory (STAI) to determine if an increase in SE would influence participant anxiety. Results There were some increases in mean CSE scores in the intervention group participants over time. Areas of increase included return to normal social activities and confidence to change diet. Although reductions were observed in mean state and trait anxiety scores in both groups, an overall larger reduction in intervention group participants was observed over time. Conclusion It is essential that patients are given the education, support, and skills to self-manage in the early post-discharge period so that they have greater SE and are less anxious. This study provides some initial evidence that nurse-led support and education during this period, particularly the first week following PCI, is beneficial and could be trialled using alternate modes of communication to support remote and rural PCI patients and extend to other cardiovascular patients.
Resumo:
The purpose of this article is to show the applicability and benefits of the techniques of design of experiments as an optimization tool for discrete simulation models. The simulated systems are computational representations of real-life systems; its characteristics include a constant evolution that follows the occurrence of discrete events along the time. In this study, a production system, designed with the business philosophy JIT (Just in Time) is used, which seeks to achieve excellence in organizations through waste reduction in all the operational aspects. The most typical tool of JIT systems is the KANBAN production control that seeks to synchronize demand with flow of materials, minimize work in process, and define production metrics. Using experimental design techniques for stochastic optimization, the impact of the operational factors on the efficiency of the KANBAN / CONWIP simulation model is analyzed. The results show the effectiveness of the integration of experimental design techniques and discrete simulation models in the calculation of the operational parameters. Furthermore, the reliability of the methodologies found was improved with a new statistical consideration.
Resumo:
Transitioning the personal brand from one representation to another is sometimes necessary, particularly within the public eye. Marketing literature regarding celebrities focuses on brand endorsement (see for example Till, 1998 or Erdogan, 1999), rather than the positioning of a celebrity brand. Furthermore, the role of social media in strengthening the celebrity brand has received limited attention in the literature outside of political marketing (see for example Crawford, 2009 and Grant, Moon and Grant, 2010). This study focuses on the brand of “Elizabeth Gilbert,” author of the bestseller memoir, Eat, Pray, Love (2006). Through critical discourse analysis, the way the author has used social media to reposition her celebrity brand at the time of the launch of her new novel, ‘The Signature of All Things’ (2013) is examined. This study focuses on the use of social media by celebrities to strengthen the celebrity brand.
Resumo:
We provide a 2.5-dimensional solution to a complete set of viscous hydrodynamical equations describing accretion- induced outflows and plausible jets around black holes/compact objects. We prescribe a self-consistent advective disk-outflow coupling model, which explicitly includes the information of vertical flux. Inter-connecting dynamics of an inflow-outflow system essentially upholds the conservation laws. We provide a set of analytical family of solutions through a self-similar approach. The flow parameters of the disk-outflow system depend strongly on the viscosity parameter α and the cooling factor.
Resumo:
The coordination driven self-assembly of discrete molecular triangles from a non-symmetric ambidentate linker 5-pyrimidinecarboxylate (5-pmc) and Pd(II)/Pt(II) based 90◦ acceptors is presented. Despite the possibility of formation of a mixture of isomeric macrocycles (linkage isomers) due to different connectivity of the ambidentate linker, formation of a single and symmetrical linkage somer in both the cases is an interesting observation. Moreover, the reported macrocycles represent the first example of discrete metallamacrocycles of bridging 5-pmc. While solution composition in both the cases was characterised by multinuclear NMR study and electrospray ionization mass spectrometry (ESI-MS), the identity of the assemblies in the solid state was established by X-ray single crystals structure analysis. Variable temperature NMR study clearly ruled out the formation of any other macrocycles by [4 + 4] or [2 + 2] self-assembly of the reacting components.
Resumo:
The theoretical optimization of the design parametersN A ,N D andW P has been done for efficient operation of Au-p-n Si solar cell including thermionic field emission, dependence of lifetime and mobility on impurity concentrations, dependence of absorption coefficient on wavelength, variation of barrier height and hence the optimum thickness ofp region with illumination. The optimized design parametersN D =5×1020 m−3,N A =3×1024 m−3 andW P =11.8 nm yield efficiencyη=17.1% (AM0) andη=19.6% (AM1). These are reduced to 14.9% and 17.1% respectively if the metal layer series resistance and transmittance with ZnS antireflection coating are included. A practical value ofW P =97.0 nm gives an efficiency of 12.2% (AM1).
Resumo:
Simultaneous consideration of both performance and reliability issues is important in the choice of computer architectures for real-time aerospace applications. One of the requirements for such a fault-tolerant computer system is the characteristic of graceful degradation. A shared and replicated resources computing system represents such an architecture. In this paper, a combinatorial model is used for the evaluation of the instruction execution rate of a degradable, replicated resources computing system such as a modular multiprocessor system. Next, a method is presented to evaluate the computation reliability of such a system utilizing a reliability graph model and the instruction execution rate. Finally, this computation reliability measure, which simultaneously describes both performance and reliability, is applied as a constraint in an architecture optimization model for such computing systems. Index Terms-Architecture optimization, computation
Resumo:
A hybrid simulation technique for identification and steady state optimization of a tubular reactor used in ammonia synthesis is presented. The parameter identification program finds the catalyst activity factor and certain heat transfer coefficients that minimize the sum of squares of deviation from simulated and actual temperature measurements obtained from an operating plant. The optimization program finds the values of three flows to the reactor to maximize the ammonia yield using the estimated parameter values. Powell's direct method of optimization is used in both cases. The results obtained here are compared with the plant data.
Resumo:
This paper deals with new results obtained in regard to the reconstruction properties of side-band Fresnel holograms (SBFH) of self-imaging type objects (for example, gratings) as compared with those of general objects. The major finding is that a distribution I2, which appears on the real-image plane along with the conventional real-image I1, remains a 2Z distribution (where 2Z is the axial distance between the object and its self-imaging plane) under a variety of situations, while its nature and focusing properties differ from one situation to another. It is demonstrated that the two distributions I1 and I2 can be used in the development of a novel technique for image subtraction.