1000 resultados para Selective harvesting
Resumo:
A mechanistic study of the H-2-assisted Selective Catalytic Reduction (SCR) of NOx with octane as reductant over a Ag/Al2O3 catalyst was carried out using a modified DRIFTS cell coupled to a mass spectrometer Using fast transient cycling switching of H-2 with a time resolution of a few seconds It was possible to differentiate potential reaction intermediates from other moieties that are clearly spectator species Using such a periodic operation mode effects were uncovered that are normally hidden in conventional transient studies which typically consist of a single transient In experiments based on a single transient addition of H-2 to or removal of H-2 from the SCR feed it was found that the changes in the concentrations of gaseous species (products and reactants) were not matched by changes at comparable timescales of the concentration of surface species observed by IR This observation indicates that the majority of sur face species observed by DRIFTS under steady-state reaction conditions are spectators In contrast under fast cycling experimental conditions It was found that a surface isocyanate species had a temporal response that matched that of N-15(2) This suggests that some of the isocyanate species observed by infrared spectroscopy could be important intermediates in the hydrogen-assisted SCR reaction although it is emphasised that this may be dependent on the way in which the infrared spectra are obtained It is concluded that the use of fast transient cycling switching techniques may provide useful mechanistic information under certain circumstances.
Resumo:
Pt-ceria catalysts present different surface chemistries depending on the preparation method and the pretreatment. The catalytic behavior of Pt/CeO2 catalysts in the hydrodechlorination of trichloroethylene (TCE) to ethylene was examined as a function of the pretreatment conditions and the noble metal precursor salts. Using FTIR and X-ray photoelectron spectroscopy, significant differences were observed in the surface properties of Pt/CeO2 prepared from the H2PtCl6 precursor after different pretreatment procedures (i.e.. reduction or oxidation-reduction). These surface changes are related to chloride residues from the synthesis. Strong changes were observed in the selectivity of the catalysts to ethylene depending on the pretreatment conditions. The 0.5%Pt/CeO2 catalyst showed a 13% selectivity toward ethylene after reduction, whereas alter oxidation, followed by reduction, the selectivity increased up to 85% at the same conversion level. This effect was only observed when a chloride-containing precursor was used in the preparation. In this way, it is demonstrated that the use of a Cl-containing Pt precursor and an air treatment prior to reduction strongly improves the ethylene selectivity of Pt-CeO2 dechlorination catalysts. This can be explained by formation or a CeOCl phase during the synthesis that decomposes upon air tempering, producing oxygen vacancies on the ceria support. We propose that these oxygen vacancies are active for cleaving off Cl from the TCE. Pt then supplies II to clean-off Cl as HCl. Reaction of TCE on Pt produces rather ethane, so Pt may be partly Cl-poisoned for the hydrodechlorination reaction but not for II, dissociation or CO adsorption.
Resumo:
Vertically aligned ZnO nanowires (NWs) with a length of 1.5-10 mu m and a mean diameter of ca. 150 nm were grown by chemical vapour deposition onto a c-oriented ZnO seed layer which was deposited by atomic layer deposition on Si substrates. The substrates were then spin-coated with an ethanol solution containing Pd nanoparticles with an average size of 2.7 and 4.5 nm. A homogeneous distribution of the Pd nanoparticles on ZnO NWs has been obtained using both Pd particle series. The catalytic activity of the ZnO NWs and Pd/ZnO NWs catalysts was measured in the semihydrogenation of 2-methyl-3-butyn-2-ol at 303-343 K and a pressure of 2-10 bar. The effect of the solvent used on the catalytic performance of the Pd/ZnO NWs catalyst was studied. The Pd/ZnO catalysts showed alkene selectivity of up to 95% at an alkyne conversion of 99%. A kinetic model is proposed to explain the activity and selectivity of the ZnO support and Pd/ZnO catalysts.
Resumo:
The disilylated compound 1,4-bis(trimethylsilyl)-2,3,5,6-tetrakis((dimethylamino)methyl)benzene, (Me(3)Si)(2)C2N4, 4, can be electrophilically palladated selectively at the C-Si bonds to afford the neutral 1,4-bis(palladium) complex [(AcOPd)(2)(C2N4)], from which the dicationic [(LPd)(2)(C2N4)](2+) (L = MeCN) organometallic species are accessible. The monosilylated species (Me(3)Si)(H)C2N4, 5, can be used for the preparation of the dicationic heterodinuclear platinum(II)-palladium(II) species [(LPd)(LPt)(C2N4)](2+) (L = MeCN) via a sequence of transmetalation of the organolithium derivative of 5 with [PtCl2(SEt(2))(2)], followed by a C-Si bond palladation reaction.
Resumo:
The design is described of a double layer frequency selective surface which can produce a differential phase shift of 180 ° as the wave propagates through it at normal incidence. The hand of an applied circularly polarized signal is reversed due to the 180° phase shift, and it is demonstrated that the exit circularly polarized output signal can be phase advanced or phase retarded by 180 ° upon rotation of the elements comprising the structure. This feature allows the surface to act as a spatial phase shifter. In this paper the beam steering capabilities of a 10 × 10 array of such elements are demonstrated. Here the individual elements comprising the array are rotated relative to each other in order to generate a progressive phase shift. At normal incidence the 3 dB Axial Ratio Bandwidth for LHCP to RHCP conversion is 5.3% and the insertion loss was found to be -2.3 dB, with minimum axial ratio of 0.05 dB. This array is shown to be able to steer a beam from -40 ° to +40 ° while holding axial ratio at the pointing angle to below 4 dB. The measured radiation patterns match the theoretical calculation and full-wave simulation results. © 2010 IEEE.
Resumo:
The role of gaseous NO and C3H8 has been studied over low-exchanged Cu-ZSM-5 zeolite employing TPD, FTIR and pulse technique with the alternate introduction of NO or C3H8 onto the catalyst surface. The rate of the N-2 formation is directly proportional to the content of gaseous NO and the surface coverage with 2-nitrosopropane. There was no formation of N-2 during interaction of gaseous C3H8 with NO adsorbates. However, 2-nitrosopropane and its isomer acetone oxime were also formed in this reaction.