946 resultados para Sediment and suspended solid, Heavy metal pollution, Environmental implications, Chemometrics


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heavy (magnetic & non-magnetic) minerals are found concentrated by natural processes in many fluvial, estuarine, coastal and shelf environments with a potential to form economic placer deposits. Understanding the processes of heavy mineral transport and enrichment is prerequisite to interpret sediment magnetic properties in terms of hydro- and sediment dynamics. In this study, we combine rock magnetic and sedimentological laboratory measurements with numerical 3D discrete element models to investigate differential grain entrainment and transport rates of magnetic minerals in a range of coastal environments (riverbed, mouth, estuary, beach and near-shore). We analyzed grain-size distributions of representative bulk samples and their magnetic mineral fractions to relate grain-size modes to respective transport modes (traction, saltation, suspension). Rock magnetic measurements showed that distribution shapes, population sizes and grain-size offsets of bulk and magnetic mineral fractions hold information on the transport conditions and enrichment process in each depositional environment. A downstream decrease in magnetite grain size and an increase in magnetite concentration was observed from riverine source to marine sink environments. Lower flow velocities permit differential settling of light and heavy mineral grains creating heavy mineral enriched zones in estuary settings, while lighter minerals are washed out further into the sea. Numerical model results showed that higher heavy mineral concentrations in the bed increased the erosion rate and enhancing heavy mineral enrichment. In beach environments where sediments contained light and heavy mineral grains of equivalent grain sizes, the bed was found to be more stable with negligible amount of erosion compared to other bed compositions. Heavy mineral transport rates calculated for four different bed compositions showed that increasing heavy mineral content in the bed decreased the transport rate. There is always a lag in transport between light and heavy minerals which increases with higher heavy mineral concentration in all tested bed compositions. The results of laboratory experiments were validated by numerical models and showed good agreement. We demonstrate that the presented approach bears the potential to investigate heavy mineral enrichment processes in a wide range of sedimentary settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to investigate a possible connection between tropical northeast (NE) Atlantic primary productivity, Atlantic meridional overturning circulation (AMOC), and drought in the Sahel region during Heinrich Stadial 1 (HS1), we used dinoflagellate cyst (dinocyst) assemblages, Mg/Ca based reconstructed temperatures, stable carbon isotopes (d13C) and geochemical parameters of a marine sediment core (GeoB 9508-5) from the continental slope offshore Senegal. Our results show a two-phase productivity pattern within HS1 that progressed from an interval of low marine productivity between ~ 19 and 16 kyr BP to a phase with an abrupt and large productivity increase from ~ 16 to 15 kyr BP. The second phase is characterized by distinct heavy planktonic d13C values and high concentrations of heterotrophic dinocysts in addition to a significant cooling signal based on reconstructions of past sea surface temperatures (SST). We conclude that productivity variations within HS1 can be attributed to a substantial shift of West African atmospheric processes. Taken together our results indicate a significant intensification of the North East (NE) trade winds over West Africa leading to more intense upwelling during the last millennium of HS1 between ~ 16 and 15 kyr BP, thus leaving a strong imprint on the dinocyst assemblages and sea surface conditions. Therefore, the two-phase productivity pattern indicates a complex hydrographic setting suggesting that HS1 cannot be regarded as uniform as previously thought.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biogeochemical behavior of a group of heavy metals and metalloids in water (including their dissolved and suspended particulate forms), bottom sediments, and zoobenthos was studied in the Ob River estuary (Obskaya Guba) - Kara Sea section on the basis of data obtained during Cruise 54 of R/V Akademik Mstislav Keldysh in September-October 2007. Changes in ratios of dissolved and particulate forms of Fe, Mn, Zn, Cu, Pb, Cd, and As were shown, as well as growth of adsorbed fractions of the elements in near-bottom suspended matter under mixing of riverine and marine waters. Features of chemical element accumulation in typical benthic organisms of the Obskaya Guba and the Kara Sea were revealed, and their concentrating factors were calculated based on specific conditions of the environment. It was shown that shells of bivalves possessing higher biomass compared to other groups of organisms in the Obskaya Guba play an important role in deposition of heavy metals. In the Obskaya Guba mollusks accumulate Cd and Pb at the background level, whereas Cu and Zn contents appear to be higher than the background level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present study, we report the results of comprehensive amino acid (AA) analyses of four Indian lakes from different climate regimes. We focus on the investigation of sediment cores retrieved from the lakes but data of modern sediment as well as vascular plant, soil, and suspended particulate matter samples from individual lakes are also presented. Commonly used degradation and organic matter source indices are tested for their applicability to the lake sediments, and we discuss potential reasons for possible limitations. A principal component analysis including the monomeric AA composition of organic matter of all analysed samples indicates that differences in organic matter sources and the environmental properties of the individual lakes are responsible for the major variability in monomeric AA distribution of the different samples. However, the PCA also gives a factor that most probably separates the samples according to their state of organic matter degradation. Using the factor loadings of the individual AA monomers, we calculate a lake sediment degradation index (LI) that might be applicable to other palaeo-lake investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Geochemical and rock magnetic investigations of sediments from three sites on the continental margin off Argentina and Uruguay were carried out to study diagenetic alteration of iron minerals driven by anaerobic oxidation of methane (AOM). The western Argentine Basin represents a suitable sedimentary environment to study nonsteady-state processes because it is characterized by highly dynamic depositional conditions. Mineralogic and bulk solid phase data document that the sediment mainly consists of terrigenous material with high contents of iron minerals. As a typical feature of these deposits, distinct minima in magnetic susceptibility (k) are observed. Pore water data reveal that these minima in susceptibility coincide with the current depth of the sulfate/methane transition (SMT) where HS- is generated by the process of AOM. The released HS- reacts with the abundant iron (oxyhydr)oxides resulting in the precipitation of iron sulfides accompanied by a nearly complete loss of magnetic susceptibility. Modeling of geochemical data suggest that the magnetic record in this area is highly influenced by a drastic change in mean sedimentation rate (SR) which occurred during the Pleistocene/Holocene transition. We assume that the strong decrease in mean SR encountered during this glacial/interglacial transition induced a fixation of the SMT at a specific depth. The stagnation has obviously enhanced diagenetic dissolution of iron (oxyhydr)oxides within a distinct sediment interval. This assumption was further substantiated by numerical modeling in which the mean SR was decreased from 100 cm/kyr during glacial times to 5 cm/kyr in the Holocene and the methane flux from below was fixed to a constant value. To obtain the observed geochemical and magnetic patterns, the SMT must remain at a fixed position for ~9000 yrs. This calculated value closely correlates to the timing of the Pleistocene/Holocene transition. The results of the model show additionally that a constant high mean SR would cause a concave-up profile of pore water sulfate under steady state conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-temperature rock magnetic measurements have distinct diagnostic value. However, in most bulk marine sediments the concentration of ferrimagnetic and antiferromagnetic minerals is extremely low, so even sensitive instrumentation often responds to the paramagnetic contribution of the silicate matrix in the residual field of the magnetometer. Analysis of magnetic extracts is usually performed to solve the problems raised by low magnetic concentrations. Additionally magnetic extracts can be used for several other analyses, for example electron microscopy or X-ray diffraction. The magnetic extraction technique is generally sufficient for sediments dominated by magnetite. In this study however, we show that high-coercivity components are rather underrepresented in magnetic extracts of sediments with a more complex magnetic mineralogy. We test heavy liquid separation, using hydrophilic sodium polytungstenate solution Na6[H2W12O40], to demonstrate the efficiencies of both concentration techniques. Low-temperature cycling of zero-field-cooled, field-cooled and saturation isothermal remanent magnetization acquired at room temperature was performed on dry bulk sediments, magnetic extracts, and heavy liquid separates of clay-rich pelagic sediments originating from the Equatorial Atlantic. The results of the thermomagnetic measurements clarify that magnetic extraction favours components with high spontaneous magnetization, such as magnetite and titanomagnetite. The heavy liquid separation is unbiased with respect to high- and low-coercive minerals, thus it represents the entire magnetic assemblage.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zambezi deep-sea fan, the largest of its kind along the east African continental margin, is poorly studied to date, despite its potential to record marine and terrestrial climate signals in the southwest Indian Ocean. Therefore, gravity core GeoB 9309-1, retrieved from 1219 m water depth, was investigated for various geophysical (magnetic susceptibility, porosity, colour reflectance) and geochemical (pore water and sediment geochemistry, Fe and P speciation) properties. Onboard and onshore data documented a sulphate/methane transition (SMT) zone at ~ 450-530 cm sediment depth, where the simultaneous consumption of pore water sulphate and methane liberates hydrogen sulphide and bi-carbonate into the pore space. This leads to characteristic changes in the sediment and pore water chemistry, as the reduction of primary Fe (oxyhydr)oxides, the precipitation of Fe sulphides, and the mobilization of Fe (oxyhydr)oxide-bound P. These chemical processes also lead to a marked decrease in magnetic susceptibility. Below the SMT, we find a reduction of porosity, possibly due to pore space cementation by authigenic minerals. Formation of the observed geochemical, magnetic and mineralogical patterns requires a fixation of the SMT at this distinct sediment depth for a considerable time-which we calculated to be ~ 10 000 years assuming steady-state conditions-following a period of rapid upward migration towards this interval. We postulate that the worldwide sea-level rise at the last glacial/interglacial transition (~ 10 000 years B.P.) most probably caused the fixation of the SMT at its present position, through drastically reduced sediment delivery to the deep-sea fan. In addition, we report an internal redistribution of P occurring around the SMT, closely linked to the (de)coupling of sedimentary Fe and P, and leaving a characteristic pattern in the solid P record. By phosphate re-adsorption onto Fe (oxyhydr)oxides above, and formation of authigenic P minerals (e.g. vivianite) below the SMT, deep-sea fan deposits may potentially act as long-term sinks for P.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Una investigación sobre la mejora de la contaminación del aire (CA) por medio de arbolado urbano se realizó en Madrid, una ciudad con casi 4 M de habitantes, 2,8 M de vehículos y casi 3 M de árboles de mantenimiento público. La mayoría de los árboles estaban en dos bosques periurbanos. Los 650.000 restantes era pies de alineación y parques. Los taxones estudiados fueron Platanus orientalis (97.205 árboles), Ulmus sp. (70.557), Pinus pinea (49.038), Aesculus hippocastanum (22.266), Cedrus sp. (13.678) y Quercus ilex (1.650), de calles y parques. Muestras foliares se analizaron en diferentes épocas del año, así como datos de contaminación por PM10 de 28 estaciones de medición de la contaminación durante 30 años, y también la intensidad del tráfico (IMD) en 2.660 calles. La acumulación de metales pesados (MP) sobre hojas y dentro de estas se estimó en relación con la CA y del suelo y la IMD del tráfico. La concentración media de Ba, Cd, Cr, Cu, Mn, Ni, Pb y Zn en suelo (materia seca) alcanzó: 489,5, 0,7, 49,4, 60,9, 460,9, 12,8, 155,9 y 190,3 mg kg-1 respectivamente. Los árboles urbanos, particularmente coníferas (debido a la mayor CA en invierno) contribuyen significativamente a mejorar la CA sobre todo en calles con alta IMD. La capacidad de las seis sp. para capturar partículas de polvo en su superficies foliares está relacionada con la IMD del tráfico y se estimó en 16,8 kg/año de MP tóxicos. Pb y Zn resultaron ser buenos marcadores antrópicos en la ciudad en relación con el tráfico, que fue la principal fuente de contaminación en los árboles y suelos de Madrid. Las especies de árboles variaron en función de su capacidad para capturar partículas (dependiendo de las propiedades de sus superficies foliares) y acumular los MP absorbidos de los suelos. Las concentraciones foliares de Pb y Zn estuvieron por encima de los límites establecidos en diferentes sitios de la ciudad. La microlocalización de Zn mediante microscópico mostró la translocación al xilema y floema. Se detectaron puntos de contaminación puntual de Cu and Cr en antiguos polígonos industriales y la distribución espacial de los MP en los suelos de Madrid mostró que en incluso en zonas interiores del El Retiro había ciertos niveles elevados de [Pb] en suelo, tal vez por el emplazamiento la Real Fábrica de Porcelana en la misma zona hace 200 años. Distintas áreas del centro de la ciudad también alcanzaron niveles altos de [Pb] en suelo. Según los resultados, el empleo de una combinación de Pinus pinea con un estrato intermedio de Ulmus sp. y Cedrus sp. puede ser la mejor recomendación como filtro verde eficiente. El efecto del ozono (O3) sobre el arbolado en Madrid fue también objeto de este estudio. A pesar de la reducción de precursores aplicada en muchos países industrializados, O3 sigue siendo la principal causa de CA en el hemisferio norte, con el aumento de [O3] de fondo. Las mayores [O3] se alcanzaron en regiones mediterráneas, donde el efecto sobre la vegetación natural es compensado por el xeromorfismo y la baja conductancia estomática en respuesta los episodios de sequía estival característicos de este clima. Durante una campaña de monitoreo, se identificaron daños abióticos en hojas de encina parecidos a los de O3 que estaban plantadas en una franja de césped con riego del centro de Madrid. Dada la poca evidencia disponible de los síntomas de O3 en frondosas perennifolias, se hizo un estudio que trató de 1) confirman el diagnóstico de daño de O3, 2) investigar el grado de los síntomas en encinas y 3) analizar los factores ambientales que contribuyeron a los daños por O3, en particular en lo relacionado con el riego. Se analizaron los marcadores macro y micromorfológicos de estrés por O3, utilizando las mencionadas encinas a modo de parcela experimental. Los síntomas consistieron en punteado intercostal del haz, que aumentó con la edad. Además de un punteado subyacente, donde las células superiores del mesófilo mostraron reacciones características de daños por O3. Las células próximas a las zonas dañadas, presentaron marcadores adicionales de estrés oxidativo. Estos marcadores morfológicos y micromorfológicos de estrés por O3 fueron similares a otras frondosas caducifolias con daños por O3. Sin embargo, en nuestro caso el punteado fue evidente con AOT40 de 21 ppm•h, asociada a riego. Análisis posteriores mostraron que los árboles con riego aumentaron su conductancia estomática, con aumento de senescencia, manteniéndose sin cambios sus características xeromórficas foliares. Estos hallazgos ponen de relieve el papel primordial de la disponibilidad de agua frente a las características xeromórficas a la hora de manifestarse los síntomas en las células por daños de O3 en encina. ABSTRACT Research about air pollution mitigation by urban trees was conducted in Madrid (Spain), a southern European city with almost 4 M inhabitants, 2.8 M daily vehicles and 3 M trees under public maintenance. Most trees were located in two urban forests, while 650'000 trees along urban streets and in parks. The urban taxa included Platanus orientalis (97'205 trees), Ulmus sp. (70’557), Pinus pinea (49'038), Aesculus hippocastanum (22’266), Cedrus sp. (13'678 and Quercus ilex (1'650) along streets and parks. Leave samples were analysed sequentially in different seasons, PM10 data from 28 air monitoring stations during 30 years and traffic density estimated from 2’660 streets. Heavy metal (HM) accumulation on the leaf surface and within leaves was estimated per tree related to air and soil pollution, and traffic intensity. Mean concentration of Ba, Cd, Cr, Cu, Mn, Ni, Pb and Zn in topsoil samples (dry mass) amounted in Madrid: 489.5, 0.7, 49.4, 60.9, 460.9, 12.8, 155.9 and 190.3 mg kg-1 respectively. Urban trees, particularly conifers (due to higher pollution in winter) contributed significantly to alleviate air pollution especially near to high ADT roads. The capacity of the six urban street trees species to capture air-born dust on the foliage surface as related to traffic intensity was estimated to 16.8 kg of noxious metals from exhausts per year. Pb and Zn pointed to be tracers of anthropic activity in the city with vehicle traffic as the main source of diffuse pollution on trees and soils. Tree species differed by their capacity to capture air-borne dust (by different leaf surface properties) and to allocate HM from soils. Pb and Zn concentrations in the foliage were above limits in different urban sites and microscopic Zn revelation showed translocation in xylem and phloem tissue. Punctual contamination in soils by Cu and Cr was identified in former industrial areas and spatial trace element mapping showed for central Retiro Park certain high values of [Pb] in soils even related to a Royal pottery 200 years ago. Different areas in the city centre also reached high levels [Pb] in soils. According to the results, a combination of Pinus pinea with understorey Ulmus sp. and Cedrus sp. layers can be recommended for the best air filter efficiency. The effects of ozone (O3) on trees in different areas of Madrid were also part of this study. Despite abatement programs of precursors implemented in many industrialized countries, ozone remained the main air pollutant throughout the northern hemisphere with background [O3] increasing. Some of the highest ozone concentrations were measured in regions with a Mediterranean climate but the effect on the natural vegetation is alleviated by low stomatal uptake and frequent leaf xeromorphy in response to summer drought episodes characteristic of this climate. During a bioindication survey, abiotic O3-like injury was identified in foliage. Trees were growing on an irrigated lawn strip in the centre of Madrid. Given the little structural evidence available for O3 symptoms in broadleaved evergreen species, a study was undertaken in 2007 with the following objectives 1) confirm the diagnosis, 2) investigate the extent of symptoms in holm oaks growing in Madrid and 3) analyse the environmental factors contributing to O3 injury, particularly, the site water supply. Therefore, macro- and micromorphological markers of O3 stress were analysed, using the aforementioned lawn strip as an intensive study site. Symptoms consisted of adaxial and intercostal stippling increasing with leaf age. Underlying stippling, cells in the upper mesophyll showed HR-like reactions typical of ozone stress. The surrounding cells showed further oxidative stress markers. These morphological and micromorphological markers of ozone stress were similar to those recorded in deciduous broadleaved species. However, stippling became obvious already at an AOT40 of 21 ppm•h and was primarily found at irrigated sites. Subsequent analyses showed that irrigated trees had their stomatal conductance increased and leaf life-span reduced whereas their leaf xeromorphy remained unchanged. These findings suggest a central role of water availability versus leaf xeromorphy for ozone symptom expression by cell injury in holm oak.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reconstructing the history of ambient levels of metals by using tree-ring chemistry is controversial. This controversy can be resolved in part through the use of selective microanalysis of individual wood cells. Using a combination of instrumental neutron activation analysis and secondary ion mass spectrometry, we have observed systematic inhomogeneity in the abundance of toxic metals (Cr, As, Cd, and Pb) within annual growth rings of Quercus rubra (red oak) and have characterized individual xylem members responsible for introducing micrometer-scale gradients in toxic metal abundances. These gradients are useful for placing constraints on both the magnitude and the mechanism of heavy metal translocation within growing wood. It should now be possible to test, on a metal-by-metal basis, the suitability of using tree-ring chemistries for deciphering long-term records of many environmental metals.