998 resultados para Secondary Electrons Emission
Resumo:
Electrical gas discharges have been the subject of numerous investigations from the last century due to their growing interest in technological and fundamental applications. Absorption of electromagnetic radiation by a gas discharge result into a change in electrical impedance due to a significant perturbations in the steady state population of excited levels and the degree of ionization. This change in impedance produced by resonant absorption of radiation is known as optogalvanic COG) effect. where as that is produced by injecting electrons in to the discharge by photoelectric emission is usually known as photoemission optogalvanic (FOG) effect. With the development of lasers and sophisticated electronic equipment. these effects have established their importance in analytical and spectroscopic measurements. The present thesis deals with the work carried out by the author in the field optogalvanic effect during the past few years at the Department of Physics in Cochin University of Science| and "Fechnology. The results and the observation are summarized in nine chapters and the references to the literature is made at the end of each chapter
Resumo:
Developments in laser technology over the past few years have made it possible to do experiments with focused intensities of IO"-102' Wcm'z. Short-pulse high-intensity lasers are able to accelerate protons and heavier ions to multi-MeV energies during their interaction with solid targets, gas jets and clusters. When such a laser radiation is focused at the intensity above 10” Wcm'2, local electric field strength will be almost equivalent to that within an atom. Hence, new nonlinear optical phenomena will be expected in the field of light matter interaction. Most of the research in the material interaction using high power lasers, especially related to plasma interaction, has been directed to the short pulse x-ray generation- Nanosecond laser interactions with solid targets also generate plasmas which emit radiation mainly in the optical region, the understanding of which is far from satisfactory. This thesis deals with a detailed study of some of the dynamical processes in plasmas generated by nanosecond and femtosecond lasers
Resumo:
In the light of the very huge demand for natural ephedrine and pseudoephidrine, a search for an angiosperm plant containing the alkaloid ephedrine was made and could locate Sida spp. of malvaceae family. Sida is a large genus of, herbs and shrubs distributed throughout the tropics. About a dozen species occur in India. The medicinally important species known are S.rhombrfolia S.cordata and S.spinosa (Anon, 1972). Among the various species, S.rh0mbIfolia is the most widely used one in the traditional system of medicine. An attempt was made in the present study to develop an ideal bioprocess for the in vitro production of ephedrine from the cell culture system of Sida rhombrfolia Linn. ssp. retusa. The callus and suspension culture were initiated and attempts were made to enhance the yield positively by employing various strategies like mutagenesis, immobilization and addition of precursors, elicitors and penneabilizing agents.
Resumo:
ZnO nanoflowers were synthesized by the hydrothermal process at an optimized growth temperature of 200 ◦C and a growth/reaction time of 3 h. As-prepared ZnO nanoflowers were characterized by x-ray diffraction, scanning electron microscopy, UV–visible and Raman spectroscopy. X-ray diffraction and Raman studies reveal that the as-synthesized flower-like ZnO nanostructures are highly crystalline with a hexagonal wurtzite phase preferentially oriented along the (1 0 1 1) plane. The average length (234–347 nm) and diameter (77–106 nm) of the nanorods constituting the flower-like structure are estimated using scanning electron microscopy studies. The band gap of ZnO nanoflowers is estimated as 3.23 eV, the lowering of band gap is attributed to the flower-like surface morphology and microstructure of ZnO. Room temperature photoluminescence spectrum shows a strong UV emission peak at 392 nm, with a suppressed visible emission related to the defect states, indicating the defect free formation of ZnO nanoflowers that can be potentially used for UV light-emitting devices. The suppressed Raman bands at 541 and 583 cm−1 related to defect states in ZnO confirms that the ZnO nanoflowers here obtained have a reduced presence of defects
Resumo:
Relatively oxygen-free mesoporous cubic ZnS particles were synthesised via a facile solvo-hydrothermal route using a water–acetonitrile combination. Boosted UV emission at 349 nm is observed from the ZnS prepared by the solvo-hydrothermal route. The increased intensity of this UV emission is attributed to activation of whispering gallery modes of almost elliptical microstructures made of porous nanostructures.
Resumo:
Earlier studies5773 in our laboratory showed that when a nucleophile is used along with disulphide or sulphenamide accelerators the vulcanization is accelerated greatly and the reaction mechanism is generally nucleophilic in nature. However it was observed that it also changes with the systems under review. The present study, deals with the use of unsubstituted amidino thiourea i.e. aminoimino methyl thiourea(AMT) V in the vulcanization studies of different elastorners and their blends. One of the aims of this study was to get further proof with regard to the theory of nucleophilic reaction mechanism in such binary systems.Mixes containing thiourea are used as controls. AMT is more nucleophilic than TU and this is clear from the fact that the fonner can condense with isothiocynate even in the absence of alkali while TU cannot". Also the guanidinyl group in AMT can facilitate the polarization of the C=S bond favouring a nucleophilic reaction
Polarization and correlation phenomena in the radiative electron capture by bare highly-charged ions
Resumo:
In dieser Arbeit wird die Wechselwirkung zwischen einem Photon und einem Elektron im starken Coulombfeld eines Atomkerns am Beispiel des radiativen Elektroneneinfangs beim Stoß hochgeladener Teilchen untersucht. In den letzten Jahren wurde dieser Ladungsaustauschprozess insbesondere für relativistische Ion–Atom–Stöße sowohl experimentell als auch theoretisch ausführlich erforscht. In Zentrum standen dabei haupsächlich die totalen und differentiellen Wirkungsquerschnitte. In neuerer Zeit werden vermehrt Spin– und Polarisationseffekte sowie Korrelationseffekte bei diesen Stoßprozessen diskutiert. Man erwartet, dass diese sehr empfindlich auf relativistische Effekte im Stoß reagieren und man deshalb eine hervorragende Methode zu deren Bestimmung erhält. Darüber hinaus könnten diese Messungen auch indirekt dazu führen, dass man die Polarisation des Ionenstrahls bestimmen kann. Damit würden sich neue experimentelle Möglichkeiten sowohl in der Atom– als auch der Kernphysik ergeben. In dieser Dissertation werden zunächst diese ersten Untersuchungen zu den Spin–, Polarisations– und Korrelationseffekten systematisch zusammengefasst. Die Dichtematrixtheorie liefert hierzu die geeignete Methode. Mit dieser Methode werden dann die allgemeinen Gleichungen für die Zweistufen–Rekombination hergeleitet. In diesem Prozess wird ein Elektron zunächst radiativ in einen angeregten Zustand eingefangen, der dann im zweiten Schritt unter Emission des zweiten (charakteristischen) Photons in den Grundzustand übergeht. Diese Gleichungen können natürlich auf beliebige Mehrstufen– sowie Einstufen–Prozesse erweitert werden. Im direkten Elektroneneinfang in den Grundzustand wurde die ”lineare” Polarisation der Rekombinationsphotonen untersucht. Es wurde gezeigt, dass man damit eine Möglichkeit zur Bestimmung der Polarisation der Teilchen im Eingangskanal des Schwerionenstoßes hat. Rechnungen zur Rekombination bei nackten U92+ Projektilen zeigen z. B., dass die Spinpolarisation der einfallenden Elektronen zu einer Drehung der linearen Polarisation der emittierten Photonen aus der Streuebene heraus führt. Diese Polarisationdrehung kann mit neu entwickelten orts– und polarisationsempfindlichen Festkörperdetektoren gemessen werden. Damit erhält man eine Methode zur Messung der Polarisation der einfallenden Elektronen und des Ionenstrahls. Die K–Schalen–Rekombination ist ein einfaches Beispiel eines Ein–Stufen–Prozesses. Das am besten bekannte Beispiel der Zwei–Stufen–Rekombination ist der Elektroneneinfang in den 2p3/2–Zustand des nackten Ions und anschließendem Lyman–1–Zerfall (2p3/2 ! 1s1/2). Im Rahmen der Dichte–Matrix–Theorie wurden sowohl die Winkelverteilung als auch die lineare Polarisation der charakteristischen Photonen untersucht. Beide (messbaren) Größen werden beträchtlich durch die Interferenz des E1–Kanals (elektrischer Dipol) mit dem viel schwächeren M2–Kanal (magnetischer Quadrupol) beeinflusst. Für die Winkelverteilung des Lyman–1 Zerfalls im Wasserstoff–ähnlichen Uran führt diese E1–M2–Mischung zu einem 30%–Effekt. Die Berücksichtigung dieser Interferenz behebt die bisher vorhandene Diskrepanz von Theorie und Experiment beim Alignment des 2p3/2–Zustands. Neben diesen Ein–Teichen–Querschnitten (Messung des Einfangphotons oder des charakteristischen Photons) wurde auch die Korrelation zwischen den beiden berechnet. Diese Korrelationen sollten in X–X–Koinzidenz–Messungen beobbachtbar sein. Der Schwerpunkt dieser Untersuchungen lag bei der Photon–Photon–Winkelkorrelation, die experimentell am einfachsten zu messen ist. In dieser Arbeit wurden ausführliche Berechnungen der koinzidenten X–X–Winkelverteilungen beim Elektroneneinfang in den 2p3/2–Zustand des nackten Uranions und beim anschließenden Lyman–1–Übergang durchgeführt. Wie bereits erwähnt, hängt die Winkelverteilung des charakteristischen Photons nicht nur vom Winkel des Rekombinationsphotons, sondern auch stark von der Spin–Polarisation der einfallenden Teilchen ab. Damit eröffnet sich eine zweite Möglichkeit zur Messung der Polaristion des einfallenden Ionenstrahls bzw. der einfallenden Elektronen.
Resumo:
We have used a microscopic theory to study the size dependence of the degree of localization of the valence electrons and holes in neutral an ionized rare-gas and Hg_n clusters. We discuss under which circumstances localization of the electrons and holes is favoured. We have calculated the ionization potential of Xe_n, Kr_n and small Hg_n clusters. Good agreement with experiments is obtained. We have also determined the dependence of the ionization potential on cluster structure.
Resumo:
We have measured prompt and delayed emission spectra of electrons from foilexcited Be, B^+, and Be^2+ ions at 300 keV. On the basis of recently calculated eigenvalues we identified two lines in the prompt Be^+ spectrum as transitions from 2s^22p and 2s2p^2. The delayed Be spectrum indicates that transitions from highly excited quintet states occur. We propose radiationless deexcitation with one excited spectator electron not involved in the transition.
Resumo:
Using a crossed-beam apparatus with a double hemispherical electron spectrometer, we have studied the spectrum of electrons released in thermal energy ionizing collisions of metastable He^*(2^3S) atoms with ground state Yb(4f^14 6s^2 ^1S_0) atoms, thereby providing the first Penning electron spectrum of an atomic target with-4f-electrons. In contrast to the HeI (58.4nm) and NeI (73.6/74.4nm) photoelectron spectra of Yb, which show mainly 4f- and 6s-electron emission in about a 5:1 ratio, the He^*(2^3S) Penning electron spectrum is dominated by 6s-ionization, acoompnnied by some correlation- induced 6p-emission (8% Yb+( 4f^14 6p^2P) formation) and very little 4f-ionization (<_~ 2.5%). This astounding result is attributed to the electron exchange mechanism for He^*(2^3S) ionization and reflects the poor overlap of the target 4f-electron wavefunction with the 1s-hole of He^*(2^3S), as discussed on thc basis of Dirac-Fock wave functions for the Yb orbitals and through calculations of the partial ionization cross sections involving semiempirical complex potentiale. The presented case may be regarded as the elearest atomic example for the surface sensitivity of He^*(2^3S) Penning ionization observed so far.
Resumo:
Augerelectron emission from foil-excited Ne-ions (6 to 10 MeV beam energy) has been measured. The beam-foil time-of-flight technique has been applied to study electronic transitions of metastable states (delayed spectra) and to determine their lifetimes. To achieve a line identification for the complex structure observed in the prompt spectrum, the spectrum is separated into its isoelectronic parts by an Augerelectron-ion coincidence correlating the emitted electrons and the emitting projectiles of well defined final charge states q_f. Well resolved spectra were obtained and the lines could be identified using intermediate coupling Dirac-Fock multiconfiguration calculations. From the total KLL-Augerelectron transition probabilities observed in the electronion coincidence experiment for Ne (10 MeV) the amount of projectiles with one K-hole just behind a C-target can be estimated. For foil-excited Ne-projectiles in contrast to single collision results the comparison of transition intensities for individual lines with calculated transition probabilities yields a statistical population of Li- and Be-like configurations.
Resumo:
Correlation energies for all isoelectronic sequences of 2 to 20 electrons and Z = 2 to 25 are obtained by taking differences between theoretical total energies of Dirac-Fock calculations and experimental total energies. These are pure relativistic correlation energies because relativistic and QED effects are already taken care of. The theoretical as well as the experimental values are analysed critically in order to get values as accurate as possible. The correlation energies obtained show an essentially consistent behaviour from Z = 2 to 17. For Z > 17 inconsistencies occur indicating errors in the experimental values which become very large for Z > 25.
Resumo:
The real-time dynamics of multiphoton ionization and fragmentation of molecules Na_2 and Na_3 has been studied in molecular beam experiments employing ion and electron spectroscopy together with femtosecond pump-probe techniques. Experiments with Na_2 and Na_3 reveal unexpected features of the dynamics of the absorption of several photons as seen in the one- and three-dimensional vibrational wave packet motion in different potential surfaces and in high laser fields: In Na_2 a second major resonance-enhanced multiphoton ionization (REMPI) process is observed, involving the excitation of two electrons and subsequent electronic autoionization. The possibility of controlling a reaction by controlling the duration of propagation of a wave packet on an electronically-excited surface is demonstrated. In high laser fields, the contributions from direct photoionization and from the second REMPI process to the total ion yield change, due to different populations in the electronic states participating in the multiphoton ionization (MPI) processes. In addition, a vibrational wave packet motion in the electronic ground state is induced through stimulated emission pumping by the pump laser. The 4^1 \summe^+_g shelf state of Na_2 is given as an example for performing frequency spectroscopy of highlying electronic states in the time domain. Pure wave packet effects, such as the spreading and the revival of a vibrational wave packet, are investigated. The three-dimensional wave packet motion in the Na_3 reflects the normal modes in the X and B states, and shows in addition the pseudorotational motion in the B state in real time.