833 resultados para Saussurea medusa Maxim


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper presents data on naturally quenched melt inclusions in olivine (Fo 69-84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (~70% crystallization) of the parental melt (~46.4 wt % SiO2, ~2.5 wt % H2O, ~0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of deltaFMQ = 0.9-1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx : (Crt-Mt) ~ 13 : 54 : 24 : 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (~45 wt % SiO2) picrobasalt (~14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ~8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20-30°C lower than the solidus temperature of 'dry' peridotite (1230-1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760-810°C and pressures of ~3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100-125 km beneath Kamchatka was estimated at 4°C/km.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polygnotos, attributed to; 1 ft. 6 13/16 in.x 1 ft. 1 1/2 in.; red figure, clay

Relevância:

10.00% 10.00%

Publicador:

Resumo:

"List of passages in which the maxim is expressed or implied": p. [100]-104.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top Row: Douglas G. Pointon, Anne M. Laliberte, Anne T. Reaume, Karen R. Anderson, Margaret A. Mehall, Laura Meintel(Cepko), Sharon M. Milberger, Felicia I. Kle??, Pamela J. DcKeyser, Kathryn G. Maudlin, Mary C. Downey, Julie A. Gergen, Anne K. Hubling, Helen Mourao, Deborah L. Dubrul, Sarah E. Whorf

Row 2: Andrea Mitchell, Karen E. Grost, Paula V. Nersesian, Kelly A. Fleming, Mary Beth Morton, Lynda L. Cooley, Cynthia A. Wandzel, Deborah L. Bach, Karen A. Schwartz, Rhonda G. Pasma, Lesley M. Shafer, Michelle A. Kauer, Mary Jo Raftery, Carol A. Hammell, Josephine G. Ratcliffe

Row 3: Shon A. Pilarski, Julie S. Peritz, Terri L. McPherson, Tina T. chandler, Janet C. Pinkerton, Rosanna M. Knapp, Lisa A. Krukowski, Madelyn L. Nichols, Jaleh Shafii, Elizabeth A. Beer, Molly A. Finn, Dyann E. Botsford, Kathryn J. Meier, Angela L. Bruder (Crane), Herlinda Olive-Downs, Laura B. Bailey

Row 4: Laura L. Brooks, Lisa K. Feezell

Row 5: Cindy L. Harvey, Kerri A. Bacsanyi, Diane R. Cepko, Sheila E. Falk, Marylin A. Jeromin, Marianne Gerard, Sharon L. Podeszwa, Lynette A. LaPratt, Mary Ann Williams, Diana L. Faulk, Christine L. Henriksen, Sharon M. LaMacchia

Row 6: Deborah A. ranazzi (Maxim), Debra J. Mitchell, Holly B. O'Brien, Elaine K. Hebda, Jeanne L. Bruff, Crystal M. Emery, Cleola Hinton, Kathleen T. Hutton, Holly L. Nelson, Karen F. Kraker

Row 7: Meghan A. Sweeney, Christine M. Olree, Marlynn J. Marroso, Toni L. Lowery, Catherine L. Carroll, Elisabeth A. Pennington, Shake Ketefian, Rhetaugh G. Dumas, Janice B. Lindberg, Marlene Rutledge, Kimberley A. Vnuk, Anne M. Walsh, Rae Ann Vander Weide, Cheryl L. Boyd

Row 8: Renee M. Marks, Janine M. Simon, Renee A. Bowles, Linda Kurpinski-Nabozny, Teresa E. Ohman, Joanna E. Bok, Jodi F. Siegel, Janeen M. Chebli, Susan M. Williamson, Mary M. Fedewa, Rose Marie Stacey, Angela J. DeWitt, Kim E. Whelan, Lyndall P. Miller

Row 9: Jean M. Dziurgot, Amy J. Elwart, Lorrie A. Sheck, Amy A. Plasman, Mary L. Schuette, Susan K. Bowen, Heather A. Woodward, Luann N. Richert, Laurie J. Schlukebir, Linda L. Stevenson(Said), Carolyn N. Hartke, Rebecca L. Evans, Kathryn A. Savage, Kathryn A. Sailus (Linden), Heidi Deininger, Jennifer J. Eppley

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Top Row: Lisa A. Anton, Karen M. Banish, Sherry L. Bendele, Lori Bishop, Rossana Biundo, Jennifer Brooks, Stefanie J. Brown, Kimberly J. Coleman, Christine M. Decker, Mary Jo Diebold, Molly Donohue, Mary C. Dubois, Meggan C. Ebert

Row 2: Michelle Fox, Ann Marie Gergely, Nina N. Giglio, Stephen Gniewek, Jennifer K. Gollon, Laura E. Gregorius, Shiree A. Hamilton, Corinne R. Hardecki, Yoline M. Hargrave, Raina C. Hartitz, Dana M. Hocking, Andrea E. Jarrett

Row 3: Nancy Johnson, Harjot Kaur, Doreen M. Kinney, Kristine Boyle, Michele Phillips, Anthony Stewart, Pamela Blumson, Lisa Rudin, Lisa Eby, Christina Koehlmann, Julie A. Kolar, Shelly M. Kraiza

Row 4: Cindy Kvarnberg, Beth Anne Lannan, Martha Lasley, James A. Lowery

Row 5: Eileen M. Lucier, Anne Marie Lutostanski, Crystal Tchoryk, Kathy Kline, Donna L. Marshall, Mary C. Maxim

Row 6: Melinda J. Mc Calla, Carolyn Mclean, Molly B. Meyersohn, Christine L. Nersesian, Ann-Marie Nosotti

Row 7: Darlene D. Osemlak, Francine D. Paglia, Danee L. Paullin, Shake Ketefian, Janice B. Lindberg, Rhetaugh G. Dumas, Violet Barkauskas, Beverly Jones, Elisabeth Pennington, Jill L. Pierpont, Marie E. Rosenburg, Rebecca L. Rotole

Row 8: Carla D. Rouse, Merilynne H. Rush, Bernadette Michelle Santos, Stephanie A. Schaltz, Colleen M. Seastrom, Anita M. Shedlock, Judith A. Skonieczny, Alice Skumautz, Nancy A. Standler, Kristine Stoetzer, Annaflor O. Suan, Lynn E. Taylo

Row 9: Renee M. Thibodeau, Kirsten M. Thornquist, Lisa A. Treash, Lisa Marie Warriner, Miriam Beth Weiner, Teresa Wen, Martha Hill Wenzler, Melissa K. White, Denise M. Williams, Christina L. Wroubel, Jamie K. Yeulett, Sarah Jo York, Jennifer Zolinski

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Front Row: Tamara McBratney, Danielle Scaglione, Helen Dalis, Fazeela Siddiqui, Cori Cunningham, Carissa Bragg, Student Manager Lisa Durham

Second Row: Petra Juzwishin, Brooke Goodwin, Kate Maxim, Justin Goble, Alison Hickey, Rachel Brunelle, Julie Brescoll, Caroline Gregory

Third Row: Hannah Fenster, Heather Mandoli, Katie Reynolds, Liz Glenn, Sophie Roberge, Erin Kopicki, Emy Bury, Liz Nelson

Fourth Row: Pam Reid, Kristin Rosella, Kristine Johns, Elizabeth Kreger, Laurel Donnell-Fink, Angela Bierhuizen, Bernadette Marten, Sera Coppolino

Top Row (L-R): Jenny Bryant, Christina Ceo, Amy Anstandig, Christina Meyer, Kate Johnson, Emily Goodwin, Melanie Duncan

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studien undersöker hur kvinnliga karaktärer representeras i relation till skräcktematiken i tv-serien Penny Dreadful (2014-). Syftet har varit att studera huruvida det som är typiska kännetecken för skräck kan kopplas till kvinnlighet, femininitet och feminism (det senare då man kan uppfatta ett genuskritiskt samtal i serien). Med hjälp av psykoanalytiska teorier kring abjektion visar analysen hur det som är skrämmande med kvinnor, är skrämmande på andra sätt än vad som är skrämmande med män. Det som är abjekt med kvinnan definieras ofta utifrån hennes sexualitet och biologiska egenskaper, och skapar därmed en feminin monstrositet och således är helt olik den manliga. Detta har till stor del växt fram genom historiska myter, religioner och konst, som har bidragit till könsspecifika monster utifrån stereotyp femininitet, så som häxor, sirener eller Medusa. Genom att utforska tv-seriens karaktärer med hjälp av semiotiska och psykoanalytiska verktyg avslöjas möjliga tolkningar som visar hur nämnda feminina monster tycks grunda sig i manlig rädsla och kvinnan som hot. Kastrationskomplexet som bidragande faktor och den manliga blicken tycks därför kväsa uttryck för kvinnlig frigörelse i serien, genom att sexualisera, plåga och göra kvinnan abjekt och monstruös i direkt genmäle till dessa. Serien tycks därför trots sin genuskritiska diskurs kontrolleras av en manlig blick och ett skoptofiliskt seende, något som möjligtvis bidrar till att kvinnlighet och femininitet kodas som abjekt, och i värsta fall stigmatiserar den feministiska kvinnan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To help understand how sugar interactions with proteins stabilise biomolecular structures, we compare the three main hypotheses for the phenomenon with the results of long molecular dynamics simulations on lysozyme in aqueous trehalose solution (0.75 M). We show that the water replacement and water entrapment hypotheses need not be mutually exclusive, because the trehalose molecules assemble in distinctive clusters on the surface of the protein. The flexibility of the protein backbone is reduced under the sugar patches supporting earlier findings that link reduced flexibility of the protein with its higher stability. The results explain the apparent contradiction between different experimental and theoretical results for trehalose effects on proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few-mode fiber transmission systems are typically impaired by mode-dependent loss (MDL). In an MDL-impaired link, maximum-likelihood (ML) detection yields a significant advantage in system performance compared to linear equalizers, such as zero-forcing and minimum-mean square error equalizers. However, the computational effort of the ML detection increases exponentially with the number of modes and the cardinality of the constellation. We present two methods that allow for near-ML performance without being afflicted with the enormous computational complexity of ML detection: improved reduced-search ML detection and sphere decoding. Both algorithms are tested regarding their performance and computational complexity in simulations of three and six spatial modes with QPSK and 16QAM constellations.