908 resultados para SOLAR PLANETS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study of solar neutrinos is very important to a better comprehension of the set of nuclear reactions that occurs inside the Sun and in solar type stars. The ux of neutrinos provides a better comprehension of the stellar structure as a whole. In this dissertation we study the ux of neutrinos in a solar model, addressing the neutrino oscillation, analyzing with the intention of determining and verify the distribution from a statistical point of view, since this ux depends on the particles intrinsic velocity distributions in stellar plasma. The main tool for this analysis was the Toulouse-Geneva Stellar Evolution Code, or TGEC, which allow us to obtain the neutrino ux values per reaction and per layer inside the Sun, allowing us to compare the observational results for the neutrino ux detected on experiments based on Cl37 (Homestake), Ga71 (SAGE, Gallex/GNO) and water (SNO). Our results show the nal distribution for neutrino ux as a function of the depth using the coordinates of mass and radius. The dissertation also shows that the equations for this ux are present in TGEC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. We study trajectories of planetesimals whose orbits decay due to gas drag in a primordial solar nebula and are perturbed by the gravity of the secondary body on an eccentric orbit whose mass ratio takes values from mu(2) = 10(-7) to mu(2) = 10(-3) increasing ten times at each step. Each planetesimal ultimately suffers one of the three possible fates: (1) trapping in a mean motion resonance with the secondary body; (2) collision with the secondary body and consequent increase of its mass; or (3) diffusion after crossing the orbit of the secondary body.Methods. We take the Burlirsh-Stoer numerical algorithm in order to integrate the Newtonian equations of the planar, elliptical restricted three-body problem with the secondary body and the planetesimal orbiting the primary. It is assumed that there is no interaction among planetesimals, and also that the gas does not affect the orbit of the secondary body.Results. The results show that the optimal value of the gas drag constant k for the 1: 1 resonance is between 0.9 and 1.25, representing a meter size planetesimal for each AU of orbital radius. In this study, the conditions of the gas drag are such that in theory, L4 no longer exists in the circular case for a critical value of k that defines a limit size of the planetesimal, but for a secondary body with an eccentricity larger than 0.05 when mu(2) = 10(-6), it reappears. The decrease of the cutoff collision radius increase the difusions but does not affect the distribution of trapping. The contribution to the mass accretion of the secondary body is over 40% with a collision radius 0.05R(Hill) and less than 15% with 0.005R(Hill) for mu(2) = 10(-7). The trappings no longer occur when the drag constant k reachs 30. That means that the size limit of planetesimal trapping is 0.2 m per AU of orbital radius. In most cases, this accretion occurs for a weak gas drag and small secondary eccentricity. The diffusions represent most of the simulations showing that gas drag is an efficient process in scattering planetesimals and that the trapping of planetesimals in the 1: 1 resonance is a less probable fate. These results depend on the specific drag force chosen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The neutrino oscillation experiment KamLAND has provided us with the first evidence for e disappearance, coming from nuclear reactors. We have combined their data with all solar neutrino data, assuming two flavor neutrino mixing, and obtained allowed parameter regions which are compatible with the so-called large mixing angle MSW solution to the solar neutrino problem. The allowed regions in the plane of mixing angle and mass squared difference are now split into two islands at 99% C.L. We have speculated how these two islands can be distinguished in the near future. We have shown that a 50% reduction of the error on SNO neutral-current measurement can be important in establishing in each of these islands the true values of these parameters lie, We also have simulated KamLAND positron energy spectrum after I year of data taking, assuming the current best fitted values of the oscillation parameters, combined it the with current solar neutrino data and showed how these two split islands can be modified. (C) 2003 Published by Elsevier B.V. B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

What can we learn from solar neutrino observations? Is there any solution to the solar neutrino anomaly which is favored by the present experimental panorama? After SNO results, is it possible to affirm that neutrinos have mass? In order to answer such questions we analyze the current available data from the solar neutrino experiments, including the recent SNO result, in view of many acceptable solutions to the solar neutrino problem based on different conversion mechanisms, for the first time using the same statistical procedure. This allows us to do a direct comparison of the goodness of the fit among different solutions, from which we can discuss and conclude on the current status of each proposed dynamical mechanism. These solutions are based on different assumptions: (a) neutrino mass and mixing, (b) a nonvanishing neutrino magnetic moment, (c) the existence of nonstandard flavor-changing and nonuniversal neutrino interactions, and (d) a tiny violation of the equivalence principle. We investigate the quality of the fit provided by each one of these solutions not only to the total rate measured by all the solar neutrino experiments but also to the recoil electron energy spectrum measured at different zenith angles by the Super-Kamiokande Collaboration. We conclude that several nonstandard neutrino flavor conversion mechanisms provide a very good fit to the experimental data which is comparable with (or even slightly better than) the most famous solution to the solar neutrino anomaly based on the neutrino oscillation induced by mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A probable capture of Phobos into an interesting resonance was presented in our previous work. With a simple model, considering Mars in a Keplerian and circular orbit, it was shown that once captured in the resonance, the inclination of the satellite reaches very high values. Here, the integrations are extended to much longer times and escape situations are analyzed. These escapes are due to the interaction of new additional resonances, which appear as the inclination starts to increase reaching some specific values. Compared to classical capture in mean motion resonances, we see some interesting differences in this problem. We also include the effect of Mars' eccentricity in the process of the capture. The role played by this eccentricity becomes important, particularly when Phobos encounters a double resonance at a approximate to 2.619R(M). Planetary perturbations acting on Mars and variation of its equator are also included. In general, some possible scenarios of the future of Phobos are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the effects of Jupiter mass growth in order to permanently capture prograde satellites. Adopting the restricted three-body problem, Sun-Jupiter-Particle, we performed numerical simulations backward in time while considering the decrease in Jupiter's mass. We considered the particle's initial conditions to be prograde, at pericenter, in the region 100R(4) <= a <= 400R(4) and 0 <= e <= 0.5. The results give Jupiter's mass at the moment when the particle escapes from the planet. Such values give an indication of the conditions that are necessary for capture. An analysis of these results shows that prograde satellite capture is more complex than a retrograde one. It occurs in a two-step process. First, when the particles get inside about 0.85R(Hill) (Hills' radius), they become weakly bound to Jupiter. Then, they keep migrating toward the planet with a strong decrease in eccentricity, while the planet is growing. The radial oscillation of the particles reduces significantly when they reach a radial distance that is less than about 0.45R(Hill) from the planet. Three-dimensional simulations for the known prograde satellites of Jupiter were performed. The results indicate that Leda, Himalia, Lysithea, and Elara could have been permanently captured when Jupiter had between 50% and 60% of its present mass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study the basic aspects concerning the stability of the outer satellites of Jupiter. Including the effects of the four giant planets and the Sun we study a large grid of initial conditions. Some important regions where satellites cannot survive are found. Basically these regions are due to Kozai and other resonances. We give an analytical explanation for the libration of the pericenters (ω) over bar - (ω) over bar (J). Another different center is also found. The period and amplitude of these librations are quite sensitive to initial conditions, so that precise observational data are needed for Pasiphae and Sinope. The effect of Jupiter's mass variation is briefly presented. This effect can be responsible for satellite capture and also for locking (ω) over bar - (ω) over bar (J) in temporary libration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, we study the stability of hypothetical satellites of extrasolar planets. Through numerical simulations of the restricted elliptic three-body problem we found the borders of the stable regions around the secondary body. From the empirical results, we derived analytical expressions of the critical semimajor axis beyond which the satellites would not remain stable. The expressions are given as a function of the eccentricities of the planet, e(P), and of the satellite, e(sat). In the case of prograde, satellites, the critical semimajor axis, in the units of Hill's radius, is given by a(E) approximate to 0.4895 (1.0000 - 1.0305e(P) - 0.2738e(sat)). In the case of retrograde satellites, it is given by a(E) approximate to 0.9309 (1.0000 - 1.0764e(P) - 0.9812e(sat)). We also computed the satellite stability region (a(E)) for a set of extrasolar planets. The results indicate that extrasolar planets in the habitable zone could harbour the Earth-like satellites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report here the utilization of atomid layer deposition to passivate surface map states in mosoporous TiO2 nanoparticles for solid state dye sensitized solar cells based on 9,9'-spirobifluorene (spiro-OMeTAD). By depositing ZrO2 films with angstrom-level precision, coating the mesoporous TiO2 produces over a two-fold enhancement in short-circuit current density, as compared to a control device. Impedance spectroscopy measurements provide evidence that the ZrO2 coating reduces recombination lossed at the TiO2/spiro-OMeTAD interface and passivates localized surface states. Low-frequency negative capacitances, frequently observed in nanocomposite solar cells, have been associated with the surface-state mediated charge transfer from TiO2 to the spiro-OMeTAD.