911 resultados para SIMULTANEOUS SMALL-ANGLE
Resumo:
The association of a particular mitochondrial DNA (mtDNA) mutation with different clinical phenotypes is a well-known feature of mitochondrial diseases. A simple genotype–phenotype correlation has not been found between mutation load and disease expression. Tissue and intercellular mosaicism as well as mtDNA copy number are thought to be responsible for the different clinical phenotypes. As disease expression of mitochondrial tRNA mutations is mostly in postmitotic tissues, studies to elucidate disease mechanisms need to be performed on patient material. Heteroplasmy quantitation and copy number estimation using small patient biopsy samples has not been reported before, mainly due to technical restrictions. In order to resolve this problem, we have developed a robust assay that utilizes Molecular Beacons to accurately quantify heteroplasmy levels and determine mtDNA copy number in small samples carrying the A8344G tRNALys mutation. It provides the methodological basis to investigate the role of heteroplasmy and mtDNA copy number in determining the clinical phenotypes.
Resumo:
Solid-state nuclear magnetic resonance relaxation experiments were used to study the rigidity and spatial proximity of polymers in sugar beet (Beta vulgaris) cell walls. Proton T1ρ decay and cross-polarization patterns were consistent with the presence of rigid, crystalline cellulose microfibrils with a diameter of approximately 3 nm, mobile pectic galacturonans, and highly mobile arabinans. A direct-polarization, magic-angle-spinning spectrum recorded under conditions adapted to mobile polymers showed only the arabinans, which had a conformation similar to that of beet arabinans in solution. These cell walls contained very small amounts of hemicellulosic polymers such as xyloglucan, xylan, and mannan, and no arabinan or galacturonan fraction closely associated with cellulose microfibrils, as would be expected of hemicelluloses. Cellulose microfibrils in the beet cell walls were stable in the absence of any polysaccharide coating.
Simple neural networks for the amplification and utilization of small changes in neuron firing rates
Resumo:
I describe physiologically plausible “voter-coincidence” neural networks such that secondary “coincidence” neurons fire on the simultaneous receipt of sufficiently large sets of input pulses from primary sets of neurons. The networks operate such that the firing rate of the secondary, output neurons increases (or decreases) sharply when the mean firing rate of primary neurons increases (or decreases) to a much smaller degree. In certain sensory systems, signals that are generally smaller than the noise levels of individual primary detectors, are manifest in very small increases in the firing rates of sets of afferent neurons. For such systems, this kind of network can act to generate relatively large changes in the firing rate of secondary “coincidence” neurons. These differential amplification systems can be cascaded to generate sharp, “yes–no” spike signals that can direct behavioral responses.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The dependence of the magnetoresistance of quasi-one-dimensional metals on the direction of the magnetic field show dips when the field is tilted at the so-called magic angles determined by the structural dimensions of the materials. There is currently no accepted explanation for these magic-angle effects. We present a possible explanation. Our model is based on the assumption that, the intralayer transport in the second most conducting direction has a small contribution from incoherent electrons. This incoherence is modeled by a small uncertainty in momentum perpendicular to the most conducting (chain) direction. Our model predicts the magic angles seen in interlayer transport measurements for different orientations of the field. We compare our results to predictions by other models and to experiment.
Resumo:
A new, fast, continuous flow technique is described for the simultaneous determination of 633 S and delta(34)S using SO masses 48, 49 and 50. Analysis time is similar to5min/sample with measurement precision and accuracy better than +/-0.3parts per thousand. This technique, which has been set up using IAEA Ag2S standards S-1, S-2 and S-3, allows for the fast determination of mass-dependent or mass-independent fractionation (MIF) effects in sulfide, organic sulfur samples and possibly sulfate. Small sample sizes can be analysed directly, without chemical pre-treatment. Robustness of the technique for natural versus artificial standards was demonstrated by analysis of a Canon Diablo troilite, which gave a delta(33)S of 0.04parts per thousand and a delta(34)S of -0.06parts per thousand compared to the values obtained for S-1 of 0.07parts per thousand and -0.20parts per thousand, respectively. Two pyrite samples from a banded-iron formation from the 3710 Ma Isua Greenstone Belt were analysed using this technique and yielded MIF (Delta(33)S of 2.45 and 3.31parts per thousand) comparable to pyrite previously analysed by secondary ion probe. Copyright (C) 2004 John Wiley Sons, Ltd.
Resumo:
This paper illustrates a method for finding useful visual landmarks for performing simultaneous localization and mapping (SLAM). The method is based loosely on biological principles, using layers of filtering and pooling to create learned templates that correspond to different views of the environment. Rather than using a set of landmarks and reporting range and bearing to the landmark, this system maps views to poses. The challenge is to produce a system that produces the same view for small changes in robot pose, but provides different views for larger changes in pose. The method has been developed to interface with the RatSLAM system, a biologically inspired method of SLAM. The paper describes the method of learning and recalling visual landmarks in detail, and shows the performance of the visual system in real robot tests.
Resumo:
In experiments reported elsewhere at this conference, we have revealed two striking results concerning binocular interactions in a masking paradigm. First, at low mask contrasts, a dichoptic masking grating produces a small facilitatory effect on the detection of a similar test grating. Second, the psychometric slope for dichoptic masking starts high (Weibull ß~4) at detection threshold, becomes low (ß~1.2) in the facilitatory region, and then unusually steep at high mask contrasts (ß~5.5). Neither of these results is consistent with Legge's (1984 Vision Research 24 385 - 394) model of binocular summation, but they are predicted by a two-stage gain control model in which interocular suppression precedes binocular summation. Here, we pose a further challenge for this model by using a 'twin-mask' paradigm (cf Foley, 1994 Journal of the Optical Society of America A 11 1710 - 1719). In 2AFC experiments, observers detected a patch of grating (1 cycle deg-1, 200 ms) presented to one eye in the presence of a pedestal in the same eye and a spatially identical mask in the other eye. The pedestal and mask contrasts varied independently, producing a two-dimensional masking space in which the orthogonal axes (10X10 contrasts) represent conventional dichoptic and monocular masking. The resulting surface (100 thresholds) confirmed and extended the observations above, and fixed the six parameters in the model, which fitted the data well. With no adjustment of parameters, the model described performance in a further experiment where mask and test were presented to both eyes. Moreover, in both model and data, binocular summation was greater than a factor of v2 at detection threshold. We conclude that this two-stage nonlinear model, with interocular suppression, gives a good account of early binocular processes in the perception of contrast. [Supported by EPSRC Grant Reference: GR/S74515/01]
Resumo:
The literature on the evaporation of drops of pure liquids, drops containing solids and droplet sprays has been critically reviewed. An experimental study was undertaken on the drying of suspended drops of pure water and aqueous sodium sulphate decahydrate with concentrations varying from 5 to 54. 1 wt. %. Individual drops were suspended from a glass filament balance in a 26 mm I.D. vertical wind tunnel, designed and constructed to supply hot de-humidified air, to simulate conditions encountered in commercial spray driers. A novel thin film thermocouple was developed to facilitate the simultaneous measurement of drop weight and core temperature. The heat conduction through the thermocouple was reduced because of its unique design; using essentially a single 50μ diameter nickel wire. For pure water drops, the Nusselt number was found to be a function of the Reynolds, Prandtl and Transfer numbers for a temperature range between 19 to 79°C. Nu = 2 + 0.19 (1/B)0.24 Re0.5 Pr0.33 Two distinct periods were observed during the drying of aqueous sodium sulphate decahydrate. The first period was characterised by the evaporation from a free liquid surface, whilst drying in the second period was controlled by the crust resistance. Fracturing of the crust occurred randomly but was more frequent at higher concentrations and temperatures. A model was proposed for the drying of slurry drops, based on a receding evaporation interface. The model was solved numerically for the variation of core temperature, drop weight and crust thickness as a function of time. Experimental results were in excellent agreement with the model predictions although at higher temperatures modifications to the model had to be made to accommodate the unusual behaviour of sodium sulphate slurries, i.e. the formation of hydrates.
Resumo:
This thesis examines the phenomenon of strategy. Making as practised by small professional football clubs. The study was undertaken because football clubs were perceived to have problems with strategy-making and because it was believed that the specific circumstances of football clubs could be outside the range of views covered by conventional views of strategy-making. The characteristics of the club environment are its uncertainty and unpredictability, simultaneous competition and co--operation, strong regulations, and a not-for-profit orientation. Small clubs in particular face a constant struggle for financial viability and survival, due in part to split business and playing objectives. The study was designed to establish the extent and nature of the difficulties clubs experience with a view to preparing the way for creating practical guidance on ways to overcome them. Clearly, in order to survive in the long term, small professional football clubs require very effective strategic decisions. This study has addressed this issue by inquiring into the nature of strategy making for these organisations with the objective to establish the general direction in which the football clubs in question should be moving. As a result, the main research question to guide this investigation was determined as: Why do small professional football clubs have difficulties making strategies. The investigation was based on an analysis the concept of strategy and its elements, the strategic vision and objectives, the process by which strategic action comes about, the strategic action itself, and the context within which this action occurs. Data has been collected, analysed and interpreted in relation to each of these elements. Together with a wide variety of published material, 20 small football clubs have been sampled and personal interviews were conducted with board members of those clubs. The findings indicate that small football clubs do indeed experience considerable difficulties in making strategies, the reasons for which lie both in the characteristics of their competitive environment and their approaches to strategy-making. The competitive environment is characterised by a cartel-like structure with a high degree of regulation, high levels of uncertainty, little control over the core product or the production process, short-term business cycles and a close geographical link between a club with its local market. The management of clubs is characterised by the need to balance conflicting sporting and business objectives. Formal planning techniques are of little use in the small football club context as decision-making processes have a strong political character and the development of novel strategies is hindered by a strong conservative, industry paradigm and a lack of financial and managerial resources. It is concluded that there is no simple advice to be given to clubs, as they must re-examine the relationship between their playing and business objectives to create a unified and workable approach.
Resumo:
We propose a dual-parameter optical sensor device achieved by UV inscription of a hybrid long-period grating-fiber Bragg grating structure in D fiber. The hybrid configuration permits the detection of the temperature from the latter's response and measurement of the external refractive index from the former's response. In addition, the host D fiber permits effective modification of the device's sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating its potential capability to detect concentration changes as small as 0.01%.
Resumo:
Surface deposition of dense aerosol particles is of major concern in the nuclear industry for safety assessment. This study presents theoretical investigations and computer simulations of single gas-born U3O8 particles impacting with the in-reactor surface and the fragmentation of small agglomerates. A theoretical model for elasto-plastic spheres has been developed and used to analyse the force-displacement and force-time relationships. The impulse equations, based on Newton's second law, are applied to govern the tangential bouncing behaviour. The theoretical model is then incorporated into the Distinct Element Method code TRUBAL in order to perform computer simulated tests of particle collisions. A comparison of simulated results with both theoretical predictions and experimental measurements is provided. For oblique impacts, the results in terms of the force-displacement relationship, coefficients of restitution, trajectory of the impacting particle, and distribution of kinetic energy and work done during the process of impact are presented. The effects of Poisson's ratio, friction, plastic deformation and initial particle rotation on the bouncing behaviour are also discussed. In the presence of adhesion an elasto-plastic collision model, which is an extension to the JKR theory, is developed. Based on an energy balance equation the critical sticking velocity is obtained. For oblique collisions computer simulated results are used to establish a set of criteria determining whether or not the particle bounces off the target plate. For impact velocities above the critical sticking value, computer simulated results for the coefficients of restitution and rebound angles of the particle are presented. Computer simulations of fracture/fragmentation resulting from agglomerate-wall impact have also been performed, where two randomly generated agglomerates (one monodisperse, the other polydisperse), each consisting of 50 primary particles are used. The effects of impact angle, local structural arrangements close to the impact point, and plastic deformation at the contacts on agglomerate damage are examined. The simulated results show a significant difference in agglomerate strength between the two assemblies. The computer data also shows that agglomerate damage resulting from an oblique impact is determined by the normal velocity component rather than the impact speed.
Resumo:
Purpose: Dynamic contact angle (DCA) methods have advantages over other contact angle methodologies, not least that they can provide more than single contact angle values. Here we illustrate the use of DCA analysis to provide “fingerprint” characterisation of contact lens surfaces, and the way that different materials change in the early stages of wear. Method: The DCA method involves attaching to a microbalance weighted strips cut from a lens. The strips are then cyclically inserted into and removed from an aqueous solution. Conventionally, readings of force taken from linear portions of the resultant dipping curves are translated into advancing (CAa) and receding contact (CAr) angles. Additionally, analysis of the force versus immersion profile provides a “fingerprint” characterisation of the state of the lens surface. Results: CAa and CAr values from DCA traces provide a useful means of differentiating gross differences in hydrophilicity and molecular mobility of surfaces under particular immersion and emersion conditions, such as dipping rate and dwell times. Typical values for etafilcon A (CAa:63.1; CAr:37) and balafilcon B (CAa:118.4; CAr:36.4) illustrate this. Surface modifications induced in lens manufacture are observed to produce not only changes in these value, which may be small, but also changes in the DCA “fingerprint” (slope, undulations, length of plateau). Interestingly, similar changes are induced in the first few hours of lens wear with some lens-patient combinations. Conclusions: Although single parameter contact angles are useful for material characterisation, information of potential clinical interest can be obtained from more detailed analysis of DCA traces.
Resumo:
A dual-parameter optical sensor has been realized by UV-writing a long-period and a Bragg grating structure in D-fiber. The hybrid configuration permits the detection of the temperature from the latter and measuring the external refractive index from the former responses, respectively. The employment of the D-fiber allows as effective modification and enhancement of the device sensitivity by cladding etching. The grating sensor has been used to measure the concentrations of aqueous sugar solutions, demonstrating the potential capability to detect concentration changes as small as 0.01%.
Resumo:
Objectives and Methods: Contact angle, as a representative measure of surface wettability, is often employed to interpret contact lens surface properties. The literature is often contradictory and can lead to confusion. This literature review is part of a series regarding the analysis of hydrogel contact lenses using contact angle techniques. Here we present an overview of contact angle terminology, methodology, and analysis. Having discussed this background material, subsequent parts of the series will discuss the analysis of contact lens contact angles and evaluate differences in published laboratory results. Results: The concepts of contact angle, wettability and wetting are presented as an introduction. Contact angle hysteresis is outlined and highlights the advantages in using dynamic analytical techniques over static methods. The surface free energy of a material illustrates how contact angle analysis is capable of providing supplementary surface characterization. Although single values are able to distinguish individual material differences, surface free energy and dynamic methods provide an improved understanding of material behavior. The frequently used sessile drop, captive bubble, and Wilhelmy plate techniques are discussed. Their use as both dynamic and static methods, along with the advantages and disadvantages of each technique, is explained. Conclusions: No single contact angle technique fully characterizes the wettability of a material surface, and the application of complimenting methods allows increased characterization. At present, there is not an ISO standard method designed for soft materials. It is important that each contact angle technique has a standard protocol, as small protocol differences between laboratories often contribute to a variety of published data that are not easily comparable. © 2013 Contact Lens Association of Ophthalmologists.