771 resultados para SILICA NANOPARTICLES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of crack-free SnO2 supported membranes requires the development of new strategies of synthesis capable to allow controlled changes of surface chemistry and to improve the processability of supported layers. In this way, the controlled modification of the SnO2 nanoparticle surface by adding capping molecules like Tiron(R) ((OH)(2)C6H2(SO3Na)(2)) during the sol-gel process was studied, aiming to obtain high performance membranes. Colloidal suspensions were prepared by hydrolyzing SnCl4.5H(2)O aqueous solution with NH4OH in presence of Tiron(R). The effect of the amount of Tiro(R) (from I to 20 wt.%) on the structural features of nanoparticles, powder redispersability and particle-solution interface properties was investigated by X-ray powder diffraction (XRPD), extended X-ray absorption fine structure (EXAFS), quasi-elastic light scattering and electrophoretic mobility measurements. XRPD and EXAFS results showed that the addition of Tiron(R) up to 20 wt.% to colloidal suspensions does not affect the crystallite size of SnO2 primary particles, determined around 2-3 nm. This value is comparable to the hydrodynamic size measured after redispersion of powder prepared with amount of Tiro(R) higher than 7.5 wt.%, indicating the absence of condensation reactions between primary particles after the initial precipitation step. As a consequence the powder with amount of Tiron(R) > 7.5 wt.%, can be fully redispersed in aqueous solution at pH greater than or equal to I I until a nanoparticle concentration of 6 vol.%. The electrophoresis measurements showed a decrease of the isoelectric point by increasing the amount of grafted Tiron(R) at the SnO2 nanoparticle surface, resulting in negatively charged particle-solution interface in all the studied pH range (2-11). These features govern the gelation process favoring the preparation of crack-free SnO2 supported membranes. The control exercised by Tiron(R) modifying agent in the aggregation process allows the fine-tuning of the porosity, from 0.124 to 0.065 cm(3) g(-1), and mean pore size, from 6.4 to 1.9 nm, as the amount of grafted molecules increases from 0 to 10 wt.%. In consequence, the membrane cut-off determined by filtration of polyethylene glycol standard solutions can be screened from 1500 to 3500 g mol(-1). (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we have made use of the study of the interaction between Fe(TDCPP)(+) and the axial ligands OH- and imidazole in order to help characterize the heterogenized catalysts Fe(TDCPP)SG and Fe(TDCPP)IPG through UV-VIS and EPR spectroscopies and thus, better understand their different catalytic activity in the oxidation of cyclohexane by PhIO. We have found out that in Fe(TDCPP)SG (containing 1.2 X 10(-6) mol Fe(TDCPP)(+)/g of support), the FeP bis-coordinates to silica gel through Fe-O coordination and it is high-spin (FeP)-P-III species. In Fe(TDCPP)IPG 1 (containing 1.1 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-4) mol imidazole/g of support), the FeP is bis-ligated to imidazole propyl gel through Fe-imidazole coordination and using NO as a paramagnetic probe, we present evidence that Fe(TDCPP)(+) is present as a mixture of low-spin (FeP)-P-III and (FeP)-P-II species. This catalyst led to a relative low yield of cyclohexanol (25%) because the bis-coordination of the (FeP)-P-III to the support partially blocks the reaction between Fe(TDCPP)(+) and PhIO, thus leading to the formation of only a small amount of the active species Fe-IV(OP+, while the (FeP)-P-II species do not react with the oxygen donor. Increasing the amount of Fe(TDCPP)(+) and decreasing the amount of imidazole in the support led to the obtention of high-spin (FeP)-P-III EPR signals in the spectra of Fe(TDCPP)IPG 5 (containing 4.4 X 10(-6) mol Fe(TDCPP)(+) and 2.2 X 10(-5) mol imidazole/g of IPG), together with low-spin (FeP)-P-III species. This latter catalyst led to better cyclohexanol yields (67%) than Fe(TDCPP)IPG 1. Fe(TDCPP)IPG 5 was further used in a study of the optimization of its catalytic activity and in recycling experiments in the optimized conditions. Recycling oxidation reactions of Fe(TDCPP)IPG 5 led to a total turnover number of 201 and total cyclohexanol yield of 201%, which could not be attained with Fe(TDCPP)Cl in homogeneous solution (turnover = 96) due to the difficulty in recovering and reusing it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

70SiO(2)-30HfO(2) mol% planar waveguides, doped with Er3+ with concentrations ranging from 0.3 to 2 mol% were prepared by sol-gel route, using dip-coating deposition on vitreous-SiO2 substrates. Infrared-to-visible upconversion emission, upon excitation at 980 nm, has been observed for all the samples. The upconversion results in green, red and blue emissions. The investigation of the upconversion dynamic as a function of the Er3+ concentration and excitation power, show that processes such as excited state absorption and energy transfer upconversion are effective. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The adsorption isotherms of MCl(2) (M = Mn, Ni, Cu, Zn and Cd) and FeCl3 by silica gel chemically modified with benzimidazole molecules (= SI(CH2)(3)-NC7H5N) were studied in ethanol solution at 298 K. A column made of modified silica was used to adsorb and preconcentrate the above metal ions from ethanol solution. Elution was done with 0.1 M hydrochloric acid in an ethanol/water mixture having a mole fraction of water of 0.8. The material was applied in the preconcentration of metal ions from commercial ethanol normally used as engine fuel.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica gel, chemically modified with 2,5-dimercapto-1,3,4-thiadiazole [=Si(CH2)(3)-NC2HNS3], abbreviated as SiB, was used to adsorb metal ions from ethanol by both batch and column techniques. Elution of Cu(II) was done with a solvent mixture of acetone and hydrochloric acid (9:1 v/v). Zn(II), Cd(II), Ni(II), Pb(II), Co(II) and Fe(III) were eluted with 0.5 mol l(-1) HC1 in ethanol solution. The modified silica was applied in the preconcentration of metal ions from commercial ethanol, normally used as engine fuel. The method is suitable for quantifying these metals at low mu g l(-1) levels.