997 resultados para Root-cause
Resumo:
Today´s organizations must have the ability to react to rapid changes in the market. These rapid changes cause pressure to continuously find new efficient ways to organize work practices. Increased competition requires businesses to become more effective and to pay attention to quality of management and to make people to understand their work's impact on the final result. The fundamentals in continmuois improvement are systematic and agile tackling of indentified individual process constraints and the fact tha nothin finally improves without changes. Successful continuous improvement requires management commitment, education, implementation, measurement, recognition and regeneration. These ingredients form the foundation, both for breakthrough projects and small step ongoing improvement activities. One part of the organization's management system are the quality tools, which provide systematic methodologies for identifying problems, defining their root causes, finding solutions, gathering and sorting of data, supporting decision making and implementing the changes, and many other management tasks. Organizational change management includes processes and tools for managing the people in an organizational level change. These tools include a structured approach, which can be used for effective transition of organizations through change. When combined with the understanding of change management of individuals, these tools provide a framework for managing people in change,
Resumo:
This work describes the isolation and structural determination of pharmacological compounds present in the bark of roots of Tabernaemontana catharinensis (Apocynaceae). Among the 27 substances detected 12 were identified as terpenoid-indole alkaloids, 2 steroids and 13 pentacyclic triterpenes. Structures were outlined based on HMQC, COSY, DEPT, 13C, and ¹H NMR data and MS. Spectral data of indole alkaloids were reviewed. An in vitro screening of the extracts and isolated compounds was carried out. Compounds ibogamine (5), 3-oxo-coronaridine (9) and 12-methoxy-4-methylvoachalotine (MMV) demonstrated effective cytotoxicity towards SKBR-3 breast adenocarcinoma and C-8161 human melanoma tumor cell lines.
Resumo:
The bioreduction of a series of substituted a-tetralones, carried out using Daucus carota root (carrot), afforded the corresponding homochiral a-tetralols in variable conversions (9 to 90%) and excellent enantiomeric excesses. Two of the assayed a-tetralones were resistant to the bioreduction conditions. The absolute configurations of four a-tetralols were assigned as being (S), by comparison to the (S)-enantiomers obtained by kinetic resolution promoted by CALB-catalysed acetylation. Additionally, the new 5-methoxy-6-methyl-1-tetralone was synthesized in seven steps from 3-methylsalicylic acid.
Resumo:
Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.
Resumo:
Volatiles produced by plantlets of Alpinia zerumbet were obtained by means of simultaneous distillation-extraction (SDE). The effects of indole-3-acetic acid, kinetin, thidiazuron and 6-benzylaminopurine on leaf and root volatile composition obtained by tissue cultures were investigated. A higher content of b-pinene and a lower content of sabinene were observed in leaf volatile of plantlets cultured in control, IAA and IAA+ TDZ media, as compared with those of donor plants. In vitro conditions were favorable to increase caryophyllene content. Volatile compounds from the root were characterized mainly by camphene, fenchyl-acetate and bornyl acetate; which constitute about 60% of total volatile.
Resumo:
Mid-infrared spectroscopy and chemometrics were used to identify adulteration in roasted and ground coffee by addition of coffee husks. Consumers' sensory perception of the adulteration was evaluated by a triangular test of the coffee beverages. Samples containing above 0.5% of coffee husks from pure coffees were discriminated by principal component analysis of the infrared spectra. A partial least-squares regression estimated the husk content in samples and presented a root-mean-square error for prediction of 2.0%. The triangular test indicated that were than 10% of coffee husks are required to cause alterations in consumer perception about adulterated beverages.
Resumo:
Surveys of soybean (Glycine max) seed grown in South Brazil revealed infection with Fusarium graminearum. To determine if members of this complex were pathogenic to soybean, six strains derived from soybean were added to soil at a rate of 10³ macroconidia/ ml or individual pods were inoculated with 10(4) macroconidia/ml. Seedlings grown in infested soil developed small necrotic lesions in the crown and upper roots. Pods inoculated with conidia developed large (>1 cm), dark brown, necrotic lesions. Younger pods inoculated with the fungus blighted and dropped from the plant. Strains of the F. graminearum complex recovered from lesions on the crown, roots and pods of soybean plants were identified as lineage 1, 2 or 8 by obtaining the DNA sequence from the EF1-alpha gene and comparing it to strains of the known lineage. Two strains of F. graminearum lineage 7 from the U.S. caused similar symptoms of the disease on soybean. Mycotoxin tests on soybean and wheat (Triticum aestivum) indicate that most Brazilian strains produce nivalenol as the major trichothecene mycotoxin rather than deoxynivalenol. In addition, strains from lineages 2 and 8 produce the novel trichothecene, 3-acetylnivalenol.
Resumo:
The etiology and epidemiology of Pythium root rot in hydroponically-grown crops are reviewed with emphasis on knowledge and concepts considered important for managing the disease in commercial greenhouses. Pythium root rot continually threatens the productivity of numerous kinds of crops in hydroponic systems around the world including cucumber, tomato, sweet pepper, spinach, lettuce, nasturtium, arugula, rose, and chrysanthemum. Principal causal agents include Pythium aphanidermatum, Pythium dissotocum, members of Pythium group F, and Pythium ultimum var. ultimum. Perspectives are given of sources of initial inoculum of Pythium spp. in hydroponic systems, of infection and colonization of roots by the pathogens, symptom development and inoculum production in host roots, and inoculum dispersal in nutrient solutions. Recent findings that a specific elicitor produced by P. aphanidermatum may trigger necrosis (browning) of the roots and the transition from biotrophic to necrotrophic infection are considered. Effects on root rot epidemics of host factors (disease susceptibility, phenological growth stage, root exudates and phenolic substances), the root environment (rooting media, concentrations of dissolved oxygen and phenolic substances in the nutrient solution, microbial communities and temperature) and human interferences (cropping practices and control measures) are reviewed. Recent findings on predisposition of roots to Pythium attack by environmental stress factors are highlighted. The commonly minor impact on epidemics of measures to disinfest nutrient solution as it recirculates outside the crop is contrasted with the impact of treatments that suppress Pythium in the roots and root zone of the crop. New discoveries that infection of roots by P. aphanidermatum markedly slows the increase in leaf area and whole-plant carbon gain without significant effect on the efficiency of photosynthesis per unit area of leaf are noted. The platform of knowledge and understanding of the etiology and epidemiology of root rot, and its effects on the physiology of the whole plant, are discussed in relation to new research directions and development of better practices to manage the disease in hydroponic crops. Focus is on methods and technologies for tracking Pythium and root rot, and on developing, integrating, and optimizing treatments to suppress the pathogen in the root zone and progress of root rot.
Resumo:
Aqueous extracts of several plant species have shown promising in controlling root-knot nematode, Meloidogyne incognita (Kofoid & White), one of the most limiting agents for carrot cultivation. The current study evaluated the effect of aqueous extracts from seven botanical species applied to 40, 50, 60, 70 and 80 days after sowing 'Nantes' carrots in soil infested with root-knot nematode. Three other treatments included cassava wastewater, distilled water (control), which were applied in the same periods of the extracts application, in addition to carbofuran 50G (80Kg/ha), which was applied once at 60 days after carrot sowing. Evaluations were performed at 90 days after inoculation to determine shoot and root fresh weight, as well as the diameter and the length of principal roots and the number of galls on primary and secondary roots. Plants treated with cassava wastewater, extracts of Ricinus communis L. seeds, Crotalaria juncea L. seeds, R. communis leaves + branches + fruits, Chenopodium ambrosioides L. leaves + branches + inflorescences and Azadirachta indica A. Juss. seeds showed the highest rates of total weight (root + shoot) and shoot weight. The extract of R. communis leaves + branches + fruits provides the highest total root weight and principal root diameter. Cassava wastewater and extracts of R. communis seeds provided the highest principal root weight. The extract of R. communis seeds and cassava wastewater can be considered promising for the alternative control of M. incognita.
Resumo:
The effectiveness of six Trichoderma-based commercial products (TCP) in controlling Fusarium root rot (FRR) in common bean was assessed under field conditions. Three TCP, used for seed treatment or applied in the furrow, increased seedling emergence as much as the fungicide fludioxonil. FRR incidence was not affected, but all TCP and fludioxonil reduced the disease severity, compared to control. Application of Trichoderma-based products was as effective as that of fludioxonil in FRR management.
Resumo:
In field experiments, the density of Macrophomina phaseolina microsclerotia in root tissues of naturally colonized soybean cultivars was quantified. The density of free sclerotia on the soil was determined for plots of crop rotation (soybean-corn) and soybean monoculture soon after soybean harvest. M. phaseolina natural infection was also determined for the roots of weeds grown in the experimental area. To verify the ability of M. phaseolina to colonize dead substrates, senesced stem segments from the main plant species representing the agricultural system of southern Brazil were exposed on naturally infested soil for 30 and 60 days. To quantify the sclerotia, the methodology of Cloud and Rupe (1991) and Mengistu et al. (2007) was employed. Sclerotium density, assessed based on colony forming units (CFU), ranged from 156 to 1,108/g root tissue. Sclerotium longevity, also assessed according to CFU, was 157 days for the rotation and 163 days for the monoculture system. M. phaseolina did not colonize saprophytically any dead stem segment of Avena strigosa,Avena sativa,Hordeum vulgare,Brassica napus,Gossypium hirsutum,Secale cereale,Helianthus annus,Triticosecalerimpaui, and Triticum aestivum. Mp was isolated from infected root tissues of Amaranthus viridis,Bidens pilosa,Cardiospermum halicacabum,Euphorbia heterophylla,Ipomoea sp., and Richardia brasiliensis. The survival mechanisms of M. phaseolina studied in this paper met the microsclerotium longevity in soybean root tissues, free on the soil, as well as asymptomatic colonization of weeds.