980 resultados para Root Canal Filling Materials
Resumo:
Radiation-induced electrical changes in both space charge region (SCR) of Si detectors and bulk material (BM) have been studied for samples of diodes and resistors made on Si materials with different initial resistivities. The space charge sign inversion fluence (Phi(inv)) has been found to increase linearly with the initial doping concentration (the reciprocal of the resistivity), which gives improved radiation hardness to Si detectors fabricated from low resistivity material. The resistivity of the BM, on the other hand, has been observed to increase with the neutron fluence and approach a saturation value in the order of hundreds k Omega cm at high fluences, independent of the initial resistivity and material type. However, the fluence (Phi(s)), at which the resistivity saturation starts, increases with the initial doping concentrations and the value of Phi(s) is in the same order of that of Phi(inv) for all resistivity samples. Improved radiation hardness can also be achieved by the manipulation of the space charge concentration (N-eff) in SCR, by selective filling and/or freezing at cryogenic temperatures the charge state of radiation-induced traps, to values that will give a much smaller full depletion voltage. Models have been proposed to explain the experimental data.
Resumo:
Accurate representation of the coupled effects between turbulent fluid flow with a free surface, heat transfer, solidification, and mold deformation has been shown to be necessary for the realistic prediction of several defects in castings and also for determining the final crystalline structure. A core component of the computational modeling of casting processes involves mold filling, which is the most computationally intensive aspect of casting simulation at the continuum level. Considering the complex geometries involved in shape casting, the evolution of the free surface, gas entrapment, and the entrainment of oxide layers into the casting make this a very challenging task in every respect. Despite well over 30 years of effort in developing algorithms, this is by no means a closed subject. In this article, we will review the full range of computational methods used, from unstructured finite-element (FE) and finite-volume (FV) methods through fully structured and block-structured approaches utilizing the cut-cell family of techniques to capture the geometric complexity inherent in shape casting. This discussion will include the challenges of generating rapid solutions on high-performance parallel cluster technology and how mold filling links in with the full spectrum of physics involved in shape casting. Finally, some indications as to novel techniques emerging now that can address genuinely arbitrarily complex geometries are briefly outlined and their advantages and disadvantages are discussed.
Resumo:
The tilt-casting method is used to achieve tranquil filling of gamma-TiAl turbine blades. The reactive alloy is melted in a cold crucible using an induction coil and then the complete crucible-mould- running system assembly is rotated through 180degrees to transfer the metal into the mould. The induction current is ramped down gradually as the rotation starts and the mould is preheated to maintain superheat. The liquid metal then enters the mould and the gas within it (argon) escapes through the inlet aperture and through auxiliary vents. Solidification starts as soon the metal enters the mould and it is important to account for this effect to predict and prevent misruns. The rotation rate has to be controlled carefully to allow sufficient time for gas evacuation, but at the same time preserve superheat. This 3-phase system is modelled using the FV method, with a fast implicit numerical scheme used to capture the transient liquid free surface. The enthalpy method is used to model solidification and predict defects such as trapped bubbles, macro-porosity or surface connected porosity. Modeling is used to support an experimental program for the development of a production method for gamma-TiAl blades, with a target length of 40cm. The experiments provide validation for the model and the model in turn optimizes the tilt-casting process. The work is part of the EU project IMPRESS.
Resumo:
Purpose: To study the impact of powder flow properties on dosator filling systems, with particular focus on improvements in dose weight accuracy and repeatability. Method: This study evaluates a range of critical powder flow properties such as: flow function, cohesion, wall friction, adhesion to wall surfaces, density/compressibility data, stress ratio “K” and gas permeability. The characterisations of the powders considered in this study were undertaken using an annular shear cell using a sample size of 0.5 litres. This tester also incorporated the facility to measure bed expansion during shear in addition to contraction under consolidation forces. A modified Jenike type linear wall friction tester was used to develop the failure loci for the powder sample in conjunction with multiple wall samples (representing a variety of material types and surface finishes). Measurements of the ratio of applied normal stress versus lateral stress were determined using a piece of test equipment specifically designed for the purpose. Results: The correct characterisation of powders and the incorporation of this data into the design of process equipment are recognised as critical for reliable and accurate operation. An example of one aspect of this work is the stress ratio “K”. This characteristic is not well understood or correctly interpreted in many cases – despite its importance. Fig 1 [Omitted] (illustrates a sample of test data. The slope of the line gives the stress ratio in a uniaxial compaction system – indicating the behaviour of the material under compaction during dosing processes. Conclusions: A correct assessment of the bulk powder properties for a given formulation can allow prediction of: cavity filling behaviour (and hence dosage), efficiency of release from dosator, and strength and stability of extruded dose en route to capsule filling Influences over the effectiveness of dosator systems have been shown to be impacted upon by: bed pre-compaction history, gas permeability in the bed (with respect to local density effects), and friction effects for materials of construction for dosators
Resumo:
Mineral trioxide aggregate (MTA) is a clinical product comprising a mixture of Portland cement and bismuth oxide which is currently used as a root−filling material in dentistry. It has good biological compatibility, is capable of promoting both osteogenesis and cementogensis, and is finding increasing use in endodontic therapy. It is dimensionally stable, and provides an acceptable and durable seal for endodontically treated teeth. This article reviews the chemistry and applications of MTA, and highlights the fact that very little is currently known about the hydration chemistry, phase evolution and stability of this cement in physiological environments. However, biological effects of MTA have been well documented and are considered in detail. The article concludes that this material is a useful addition to the range of materials available for clinical application in endodontics.
Resumo:
Objective: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. Materials and Methods: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM. Results: The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers,though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material. Conclusions: Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits.
Resumo:
This paper reviews statistical models obtained from a composite factorial design study, which was carried out to determine the influence of three key parameters of mixture composition on filling ability and passing ability of self-consolidating concrete (SCC). This study was a part of the European project “Testing SCC”- GRD2-2000-30024. The parameters considered in this study were the dosages of water and high-range water-reducing admixture (HRWRA), and the volume of coarse aggregates. The responses of the derived statistical models were slump flow, T50 , T60, V-funnel flow time, Orimet flow time, and blocking ratio (L-box). The retention of these tests was also measured at 30 and 60 minutes after adding the first water. The models are valid for mixtures made with 188 to 208 L/m3 (317 to 350 lb/yd3) of water, 3.8 to 5.8 kg/m3 (570 to 970 mL/100 kg of binder) of HRWRA, and 220 to 360 L/m3 (5.97 to 9.76 ft3/yd3) of coarse aggregates. The utility of such models to optimize concrete mixtures and to achieve a good balance between filling ability and passing ability is discussed. Examples highlighting the usefulness of the models are presented using isoresponse surfaces to demonstrate single and coupled effects of mixture parameters on slump flow, T50 , T60 , V-funnel flow time, Orimet flow time, and blocking ratio. The paper also illustrates the various trade-offs between the mixture parameters on the derived responses that affected the filling and the passing ability.
Resumo:
The use of self-compacting concrete (SCC) facilitates the placing of concrete by eliminating the need for compaction by vibration. Given the highly flowable nature of such concrete, care is required to ensure excellent filling ability and adequate stability. This is especially important in deep structural members and wall elements where concrete can block the flow, segregate and exhibit bleeding and settlement which can result in local defects that can reduce mechanical properties, durability and quality of surface finish. This paper shows results of an investigation of fresh properties of self-compacting concrete, such as filling ability measured by slump flow and flow time (measured by Orimet) and plastic fresh settlement measured in a column. The SCC mixes incorporated various combinations of fine inorganic powders and admixtures. The slump flow of all SCCs was greater than 580 mm and the time in which the slumping concrete reached 500 rnm was less than 3 s. The flow time was less than 5 s. The results on SCCs were compared to a control mix. The compressive strength and splitting tensile strength of SCCs were also measured. The effects of water/powder ratio, slump and nature of the sand on the fresh settlement were also evaluated. The volume of coarse aggregate and the dosage of superphsticizer were kept constant. It can be concluded that the settlement of fresh self-compacting concrete increased with the increase in water/powder ratio and slump. The nature of sand influenced the maximum settlement.
Resumo:
We live in a richly structured auditory environment. From the sounds of cars charging towards us on the street to the sounds of music filling a dancehall, sounds like these are generally seen as being instances of things we hear but can also be understood as opportunities for action. In some circumstances, the sound of a car approaching towards us can provide critical information for the avoidance of harm. In the context of a concert venue, sociocultural practices like music can equally afford coordinated activities of movement, such as dancing or music making. Despite how evident the behavioral effects of sound are in our everyday experience, they have been sparsely accounted for within the field of psychology. Instead, most theories of auditory perception have been more concerned with understanding how sounds are passively processed and represented or how they convey information of world, neglecting how this information can be used for anything. Here, we argue against these previous rationalizations, suggesting instead that information is instantiated through use and, therefore, is an emergent effect of a perceiver’s interaction with their environment. Drawing on theory from psychology, philosophy and anthropology, we contend that by thinking of sounds as materials, theorists and researchers alike can get to grips with the vast array of auditory affordances that we purposefully bring into use when interacting with the environment.
Resumo:
Development of a sheep vertebroplasty model for bioceramic materials assessment Sheep has been widely used as an animal orthopaedic model. Although several studies report anatomic and biomechanical similarities as well as distinctions of ovine lumbar vertebrae when compared to human’s, only a few studies describe its actual use as a vertebroplasty model. Due to distinct anatomic features, sheep lumbar vertebrae pose a challenge when developing a minimally invasive procedure for vertebroplasty material testing, under conditions meant to be the most similar to clinical procedure. The present work describes the development of an appropriate surgical percutaneous vertebroplasty model in the lumbar spine of sheep, applicable in vivo, that minimizes the risk of post-surgical complications. This model was mechanically evaluated ex-vivo regarding its safety, and used to evaluate the injectability and radiopacity of two new bioceramic materials when compared to a commercial bioceramic bone substitute (Cerament™ SpineSupport). Microtomography techniques helped in the development of the model and results assessment. Under fluoroscopic guidance, a defect was created through a bilateral modified parapedicular access in the cranial hemivertebrae of 30 sheep lumbar vertebrae (L4, L5 and L6). The manually drilled defect had an average volume of 1209 ±226 mm3 and allowed the novel materials injection through a standardized injection cannula placed in one of the entrance points. Adequate defect filling was observed with all tested materials. No mechanical failure was observed under loads higher than the physiological.
Resumo:
The testing of novel biomaterials for percutaneous vertebroplasty depends on suitable animal models. The aim of this study was to develop ex vivo a reproducible and feasible model of percutaneous vertebroplasty, for ulterior application in vivo. A large animal model was used (Merino sheep), due to its translational properties. Vertebroplasty was performed under tactile and fluoroscopic control, through a bilateral modified parapedicular access in lumbar vertebrae (n=12). Care was taken in order to avoid disruption of the vertebral foramen. The average defect volume was 1234±240 mm3. This mean volume ensures practical defects to test novel injectable biomaterials. 6 vertebrae were injected with a commercial cement (Cerament®, Bone Support, Sweden). Adequate defect filling was observed in all vertebrae. All vertebrae were assessed by microCT, prior to and post defect creation and after biomaterial injection. All vertebrae were mechanical tested. No mechanical failure was observed under loads higher than the physiological. Ultimately, this model is considered suitable for pre-clinical in vivo studies, mimicking clinical application.
Resumo:
The development and applications of thermoset polymeric composites, namely fibre reinforced plastics (FRP), have shifted in the last decades more and more into the mass market [1]. Despite of all advantages associated to FRP based products, the increasing production and consume also lead to an increasing amount of FRP wastes, either end-of-lifecycle products, or scrap and by-products generated by the manufacturing process itself. Whereas thermoplastic FRPs can be easily recycled, by remelting and remoulding, recyclability of thermosetting FRPs constitutes a more difficult task due to cross-linked nature of resin matrix. To date, most of the thermoset based FRP waste is being incinerated or landfilled, leading to negative environmental impacts and supplementary added costs to FRP producers and suppliers. This actual framework is putting increasing pressure on the industry to address the options available for FRP waste management, being an important driver for applied research undertaken cost efficient recycling methods. [1-2]. In spite of this, research on recycling solutions for thermoset composites is still at an elementary stage. Thermal and/or chemical recycling processes, with partial fibre recovering, have been investigated mostly for carbon fibre reinforced plastics (CFRP) due to inherent value of carbon fibre reinforcement; whereas for glass fibre reinforced plastics (GFRP), mechanical recycling, by means of milling and grinding processes, has been considered a more viable recycling method [1-2]. Though, at the moment, few solutions in the reuse of mechanically-recycled GFRP composites into valueadded products are being explored. Aiming filling this gap, in this study, a new waste management solution for thermoset GFRP based products was assessed. The mechanical recycling approach, with reduction of GFRP waste to powdered and fibrous materials was applied, and the potential added value of obtained recyclates was experimentally investigated as raw material for polyester based mortars. The use of a cementless concrete as host material for GFRP recyclates, instead of a conventional Portland cement based concrete, presents an important asset in avoiding the eventual incompatibility problems arisen from alkalis silica reaction between glass fibres and cementious binder matrix. Additionally, due to hermetic nature of resin binder, polymer based concretes present greater ability for incorporating recycled waste products [3]. Under this scope, different GFRP waste admixed polymer mortar (PM) formulations were analyzed varying the size grading and content of GFRP powder and fibre mix waste. Added value of potential recycling solution was assessed by means of flexural and compressive loading capacities of modified mortars with regard to waste-free polymer mortars.
Resumo:
In March 1931, Captain Bruce Angus was sent to Sarnia by Gordon C. Leitch, general manager of Toronto Elevators. He was sent to inspect the Sarnian to ensure it was still seaworthy. Leitch was a savvy business man, who had been active in the business community for a number of years. Leitch began his career with a partner in the lumber business. When that went under he moved into graineries and worked for the Winnipeg Wheat Pool for 12 years. After Winnipeg he moved to Toronto, which was closer to his home town of Ridgetown, Ontario. In Toronto Leitch became manager of the Toronto branch of the Canadian Wheat Pool. While managing the wheat pools in Toronto Leitch became aware of huge costs associated with shipping the grains from the praries into the Toronto area. He felt that there was no need for such costs and decided to do something to make them better and cheaper for the business. Originally the grain was loaded onto Lakers that would bring the grain from the praries to Lake Huron and Georgian Bay. It was stored there until needed by the Toronto graineries and then hauled across land by either truck or train. The land journey was the most expensive and the one which Leitch wanted to eliminate. This was a fine plan except for 2 obstacles that were quickly overcome. First of all the Welland canals were not large enough to accommodate the large carriers that were bringing in the grain. This was changing as the expansion and widening of the canals was already underway. The second issue was the lack of storage in Toronto for the grain. The grain elevators had been destroyed by fire in the late 1880s and never replaced. Leitch propsed his company built its own storage elevators along the water front to allow not only for easier access to the grain, and more timely production of products. The elevators would aslo create a reduction in shipping costs and an overall more competitoive price for the customers of the grainery. The company refused, so Leitch went elsewhere to friends and contacts within the grain industry. The elevators were built and Leitch quit his job with the Canadian Wheat Pool and became the general manager of the elevators. Although the elevators were built and ready for storage the next issue was filling them. None of the carriers wanted to do business with Leitch because the competition in Georgian Bay threatened to cancel their contracts if they did. Leitch saw no way around this, but to provide his own transportation. This is when he sent Captain Bruce Angus to scout out potential ships. The ship was purchased for $37,000 and after another $30,000 was spent to fix it up, it was ready for business. The need for transportation and the finding of a seaworthy ship, lead to the beginnings of the Northland Steamship Company. The Sarnian proved to not be enough for the business underway. Leitch decided another ship was necessary. He joined forces with James Norris the owner of the Norris Grain Company. He proposed they join forces to create a more economical means of transportating their products.
Resumo:
The Canadian Canal Society was founded in 1982 in St. Catharines, Ontario. The Society is a "not-for-profit, educational, scientific and historical organization, dedicated to the preservation of the canal heritage of Canada." To this end, the Society endeavours to promote the collection and publication of materials related to the preservation, documentation and interpretation of Canadian canals. Their newsletter, Canals Canada/Canaux du Canada is distributed to Society members, and regular field trips are organized for interested members.