976 resultados para River Habitat Templet


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transition between freshwater and marine environments is associated with high mortality for juvenile anadromous salmonids, yet little is known about this critical period in many large rivers. To address this deficiency, we investigated the estuarine ecology of juvenile salmonids and their associated fish assemblage in open-water habitats of the lower Columbia River estuary during spring of 2007–10. For coho (Oncorhynchus kisutch), sockeye (O. nerka), chum (O. keta), and yearling (age 1.0) Chinook (O. tshawytscha) salmon, and steelhead (O. mykiss), we observed a consistent seasonal pattern characterized by extremely low abundances in mid-April, maximum abundances in May, and near absence by late June. Subyearling (age 0.0) Chinook salmon were most abundant in late June. Although we observed interannual variation in the presence, abundance, and size of juvenile salmonids, no single year was exceptional across all species-and-age classes. We estimated that >90% of juvenile Chinook and coho salmon and steelhead were of hatchery origin, a rate higher than previously reported. In contrast to juvenile salmonids, the abundance and composition of the greater estuarine fish assemblage, of which juvenile salmon were minor members, were extremely variable and likely responding to dynamic physical conditions in the estuary. Comparisons with studies conducted 3 decades earlier suggest striking changes in the estuarine fish assemblage—changes that have unknown but potentially important consequences for juvenile salmon in the Columbia River estuary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Piscivorous fishes, many of which are economically valuable, play an important role in marine ecosystems and have the potential to affect fish and invertebrate populations at lower trophic levels. Therefore, a quantitative understanding of the foraging ecology of piscivores is needed for ecosystem-based fishery management plans to be successful. Abundance and stomach contents of seasonally co-occurring piscivores were examined to determine overlap in resource use for Summer Flounder (Paralichthys dentatus; 206–670 mm total length [TL]), Weakfish (Cynoscion regalis; 80–565 mm TL), Bluefish (Pomatomus saltatrix; 55–732 mm fork length [FL]), and Striped Bass (Morone saxatilis; 422–920 mm FL). We collected samples from monthly, fishery-independent trawl surveys conducted on the inner continental shelf (5–27 m) off New Jersey from June to October 2005. Fish abundances and overlaps in diet and habitat varied over this study period. A wide range of fish and invertebrate prey was consumed by each species. Diet composition (determined from 1997 stomachs with identifiable contents) varied with ontogeny (size) and indicated limited overlap between most of the species size classes examined. Although many prey categories were shared by the piscivores examined, different temporal and spatial patterns in habitat use seemed to alleviate potential competition for prey. Nevertheless, the degree of overlap in both fish distributions and diets increased severalfold in the fall as species left estuaries and migrated across and along the study area. Therefore, the transitional period of fall migration, when fish densities are higher than at other times of the year, may be critical for unraveling resource overlap for these seasonally migrant predators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Ecological Society of America and NOAA's Offices of Habitat Conservation and Protected Resources sponsored a workshop to develop a national marine and estuarine ecosystem classification system. Among the 22 people involved were scientists who had developed various regional classification systems and managers from NOAA and other federal agencies who might ultimately use this system for conservation and management. The objectives were to: (1) review existing global and regional classification systems; (2) develop the framework of a national classification system; and (3) propose a plan to expand the framework into a comprehensive classification system. Although there has been progress in the development of marine classifications in recent years, these have been either regionally focused (e.g., Pacific islands) or restricted to specific habitats (e.g., wetlands; deep seafloor). Participants in the workshop looked for commonalties across existing classification systems and tried to link these using broad scale factors important to ecosystem structure and function.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef fishes are conspicuous and essential components of coral reef ecosystems and economies of southern Florida and the United States Virgin Islands (USVI). Throughout Florida and the USVI, reef fish are under threat from a variety of anthropogenic and natural stressors including overfishing, habitat loss, and environmental changes. The South Florida/Caribbean Network (SFCN), a unit of the National Park Service (NPS), is charged with monitoring reef fishes, among other natural and cultural resources, within six parks in the South Florida - Caribbean region (Biscayne National Park, BISC; Buck Island Reef National Monument, BUIS; Dry Tortugas National Park, DRTO; Everglades National Park, EVER; Salt River Bay National Historic Park and Ecological Preserve, SARI; Virgin Islands National Park, VIIS). Monitoring data is intended for park managers who are and will continue to be asked to make decisions to balance environmental protection, fishery sustainability and park use by visitors. The range and complexity of the issues outlined above, and the need for NPS to invest in a strategy of monitoring, modeling, and management to ensure the sustainability of its precious assets, will require strategic investment in long-term, high-precision, multispecies reef fish data that increases inherent system knowledge and reduces uncertainty. The goal of this guide is to provide the framework for park managers and researchers to create or enhance a reef fish monitoring program within areas monitored by the SFCN. The framework is expected to be applicable to other areas as well, including the Florida Keys National Marine Sanctuary and Virgin Islands Coral Reef National Monument. The favored approach is characterized by an iterative process of data collection, dataset integration, sampling design analysis, and population and community assessment that evaluates resource risks associated with management policies. Using this model, a monitoring program can adapt its survey methods to increase accuracy and precision of survey estimates as new information becomes available, and adapt to the evolving needs and broadening responsibilities of park management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Marine mammals, such as dolphins, can serve as key indicator species in coastal areas by reflecting the effects of natural and anthropogenic stressors. As such they are often considered sentinels of environmental and ecosystem health (Bossart 2006; Wells et al. 2004; Fair and Becker 2000). The bottlenose dolphin is an apex predator and a key component of many estuarine environments in the southeastern United States (Woodward-Clyde Consultants 1994; SCDNR 2005). Health assessments of dolphins are especially critical in areas where populations are depleted, show signs of epidemic disease and/or high mortality and/or where habitat is being altered or impacted by human activities. Recent assessments of environmental conditions in the Indian River Lagoon, Florida (IRL) and the estuarine waters surrounding Charleston, South Carolina (CHS) highlight the need for studies of the health of local bottlenose dolphins. While the condition of southeastern estuaries was rated as fair in the National Coastal Condition Report (U.S. EPA 2001), it was noted that the IRL was characterized by poorer than expected benthic communities, significant sediment toxicity and increased nutrient concentrations. Similarly, portions of the CHS estuary have sediment concentrations of aliphatic aromatic hydrocarbons, select inorganic metals, and some persistent pesticides far in excess of reported bioeffect levels (Hyland et al. 1998). Long-term trends in water quality monitoring and recent scientific research suggest that waste load assimilation, non-point source runoff impacts, contaminated sediments, and toxic pollutants are key issues in the CHS estuary system. Several ‘hot spots’ with high levels of heavy metals and organic compounds have been identified (Van Dolah et al. 2004). High concentrations of anthropogenic trace metals, polychlorinated biphenyls (PCB’s) and pesticides have been found in the sediments of Charleston Harbor, as well as the Ashley and Cooper Rivers (Long et al. 1998). Two superfund sites are located within the CHS estuary and the key contaminants of concern associated with these sites are: polycyclic aromatic hydrocarbons (PAH), lead, chromium, copper, arsenic, zinc and dioxin. Concerns related to the overall health of IRL dolphins and dermatologic disease observed in many dolphins in the area (Bossart et al. 2003) initiated an investigation of potential factors which may have impacted dolphin health. From May-August 2001, 35 bottlenose dolphins died in the IRL during an unusual mortality event (MMC 2003). Many of these dolphins were diagnosed with a variety of skin lesions including proliferative ulcerative dermatitis due to protozoa and fungi, dolphin pox and a vesicular dermatopathy of unknown etiology (Bossart et al. 2003). Multiple species from fish to dolphins in the IRL system have exhibited skin lesions of various known and unknown etiologies (Kane et al. 2000; Bossart et al. 2003; Reif et al. 2006). On-going photo-identification (photo-ID) studies have documented skin diseases in IRL dolphins (Mazzoil et al. 2005). In addition, up to 70% of green sea turtles in the IRL exhibit fibropapillomas, with the highest rates of occurrence being seen in turtles from the southern IRL (Hirama 2001).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The US Fish and Wildlife Service Cape Romain National Wildlife Refuge (CRNWR) and the Center for Coastal Environmental Health and Biomolecular Research (CCEHBR) at Charleston are interested in assessing the status of our coastal resources in light of increased coastal development and recreational use. Through an Interagency Agreement (FWS #1448-40181-00-H-001), an ecological characterization was undertaken to describe the status of and potential impacts to resources at CRNWR. This report describes historic fisheries-independent or non-commercial data relevant to CRNWR that can be used to evaluate the role of the Refuge as habitat for nearshore and offshore fish species. The purpose of this document is two-fold, first to give resource managers an understanding of fisheries data that have been collected over the years and, second, to illustrate how these data can be applied to address specific management issues. This report provides an overview of historic fisheries data collected along the southeast coast, as well as basic summaries of that data relevant to CRNWR, indicating how these data can be used to address specific questions of interest to Refuge managers and biologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The overall goal of this assessment was to evaluate the effects of nutrient-source reductions that may be implemented in the Mississippi River Basin (MRB) to reduce the problem of low oxygen conditions (hypoxia) in the nearshore Gulf of Mexico. Such source reductions would affect the quality of surface waters—streams, rivers, and reservoirs—in the drainage basin itself, as well as nearshore Gulf waters. The task group’s work was divided into addressing the effects of nutrient-source reductions on: (1) surface waters in the MRB and (2) hypoxia in the Gulf of Mexico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ths report addresses the following two questions: 1) What are the loads (flux) of nutrients transported from the Mississippi-Atchafalaya River Basin to the Gulf of Mexico, and where do they come from within the basin? 2) What is the relative importance of specific human activities, such as agriculture, point-source discharges, and atmospheric deposition in contributing to these loads? These questions were addressed by first estimating the flux of nutrients from the Mississippi-Atchafalaya River Basin and about 50 interior basins in the Mississippi River system using measured historical streamflow and water quality data. Annual nutrient inputs and outputs to each basin were estimated using data from the National Agricultural Statistics Service, National Atmospheric Deposition Program, and point-source data provided by the USEPA. Next, a nitrogen mass balance was developed using agricultural statistics, estimates of nutrient cycling in agricultural systems, and a geographic information system. Finally, multiple regression models were developed to estimate the relative contributions of the major input sources to the flux of nitrogen and phosphorus to the Gulf of Mexico.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nutrient overenrichment from human activities is one of the major stresses affecting coastal ecosystems. There is increasing concern in many areas around the world that an oversupply of nutrients from multiple sources is having pervasive ecological effects on shallow coastal and estuarine areas. These effects include reduced light penetration, loss of aquatic habitat, harmfid algal blooms, a decrease in dissolved oxygen (or hypoxia), and impacts on living resources. The largest zone of oxygen-depleted coastal waters in the United States, and the entire western Atlantic Ocean, is found in the northern Gulf of Mexico on the Louisiana-Texas continental shelf. This zone is influenced by the freshwater discharge and nutrient flux of the Mississippi River system. This report describes the seasonal, interannual, and long-term variability in hypoxia in the northern Gulf of Mexico and its relationship to nutrient loading. It also documents the relative roles of natural and human-induced factors in determining the size and duration of the hypoxic zone.