866 resultados para Rhythmic masticatory muscle activity
Resumo:
The abdominal muscles have an important role in control and movement of the lumbar spine and pelvis. Given there is new evidence of morphological and functional differences between distinct anatomical regions of the abdominal muscles, this study investigated whether there are regional differences in postural activity of these muscles and whether recruitment varies between different body positions. Eleven subjects with no history of low back pain that affected function or for which they sought treatment participated in the study. Electromyographic (EMG) activity of the upper, middle and lower regions of transversus abdominis (TrA), the middle and lower regions of obliquus internus abdominis (OI) and the middle region of obliquus externus abdominis (OE) was recorded using intramuscular electrodes. All subjects performed rapid, unilateral shoulder flexion in standing and six subjects also moved their upper limb in sitting. There were regional differences in the postural responses of TrA with limb movement. Notably, the onset of EMG of the upper region was later than that of the lower and middle regions. There were no differences in the EMG onsets of lower and middle TrA or OI. The postural responses of the abdominal muscles were also found to differ between body positions, with recruitment delayed in sitting compared to standing. This study showed that there is regional differentiation in TrA activity with challenges to postural control and that body position influences the postural responses of the abdominal muscles. These results may reflect variation in the contribution of abdominal muscle regions to stability of the trunk. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this study, we examined patterns of leg muscle recruitment and co-activation, and the relationship between muscle recruitment and cadence, in highly trained cyclists. Electromyographic (EMG) activity of the tibialis anterior, tibialis posterior, peroneus longus, gastrocnemius lateralis and soleus was recorded using intramuscular electrodes, at individual preferred cadence, 57.5, 77.5 and 92.5 rev.min(-1). The influence of electrode type and location on recorded EMG was also investigated using surface and dual intramuscular recordings. Muscle recruitment patterns varied from those previously reported, but there was little variation in muscle recruitment between these highly trained cyclists. The tibialis posterior, peroneus longus and soleus were recruited in a single, short burst of activity during the downstroke. The tibialis anterior and gastrocnemius lateralis were recruited in a biphasic and alternating manner. Contrary to existing hypotheses, our results indicate little co-activation between the tibialis posterior and peroneus longus. Peak EMG amplitude increased linearly with cadence and did not decrease at individual preferred cadence. There was little variation in patterns of muscle recruitment or co-activation with changes in cadence. Intramuscular electrode location had little influence on recorded EMG. There were significant differences between surface and intramuscular recordings from the tibialis anterior and gastrocnemius lateralis, which may explain differences between our findings and those of previous studies.
Resumo:
Long (6- to 9-mo) bouts of estivation in green-striped burrowing frogs lead to 28% atrophy of cruralis oxidative fibers (P < 0.05) and some impairment of in vitro gastrocnemius endurance (P < 0.05) but no significant deficit in maximal twitch force production. These data suggest the preferential atrophy of oxidative fibers at a rate slower than, but comparable to, laboratory disuse models. We tested the hypothesis that the frog limits atrophy by modulating oxidative stress. We assayed various proteins at the transcript level and verified these results for antioxidant enzymes at the biochemical level. Transcript data for NADH ubiquinone oxidoreductase subunit 1 (71% downregulated, P < 0.05) and ATP synthase (67% downregulated, P < 0.05) are consistent with mitochondrial quiescence and reduced oxidant production. Meanwhile, uncoupling protein type 2 transcription (P < 0.31), which is thought to reduce mitochondrial leakage of reactive oxygen species, was maintained. Total antioxidant defense of water-soluble (22.3 +/- 1.7 and 23.8 +/- 1.5 mu M/mu g total protein in control and estivator, respectively, P = 0.53) and membrane-bound proteins (31.5 +/- 1.9 and 42.1 +/- 7.3 mu M/mu g total protein in control and estivator, respectively, P = 0.18) was maintained, equivalent to a bolstering of defense relative to oxygen insult. This probably decelerates muscle atrophy by preventing accumulation of oxidative damage in static protein reserves. Transcripts of the mitochondrially encoded antioxidant superoxide dismutase type 2 ( 67% downregulated, P < 0.05) paralleled mitochondrial activity, whereas nuclear-encoded catalase and glutathione peroxidase were maintained at control values (P = 0.42 and P = 0.231), suggesting a dissonance between mitochondrial and nuclear antioxidant expression. Pyruvate dehydrogenase kinase 4 transcription was fourfold lower in estivators (P = 0.11), implying that, in contrast to mammalian hibernators, this enzyme does not drive the combustion of lipids that helps spare hypometabolic muscle.
Resumo:
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Resumo:
Orphan nuclear receptors: therapeutic opportunities in skeletal muscle. Am J Physiol Cell Physiol 291: C203-C217, 2006; doi: 10.1152/ajpcell. 00476.2005.-Nuclear hormone receptors (NRs) are ligand-dependent transcription factors that bind DNA and translate physiological signals into gene regulation. The therapeutic utility of NRs is underscored by the diversity of drugs created to manage dysfunctional hormone signaling in the context of reproductive biology, inflammation, dermatology, cancer, and metabolic disease. For example, drugs that target nuclear receptors generate over $10 billion in annual sales. Almost two decades ago, gene products were identified that belonged to the NR superfamily on the basis of DNA and protein sequence identity. However, the endogenous and synthetic small molecules that modulate their action were not known, and they were denoted orphan NRs. Many of the remaining orphan NRs are highly enriched in energy-demanding major mass tissues, including skeletal muscle, brown and white adipose, brain, liver, and kidney. This review focuses on recently adopted and orphan NR function in skeletal muscle, a tissue that accounts for similar to 35% of the total body mass and energy expenditure, and is a major site of fatty acid and glucose utilization. Moreover, this lean tissue is involved in cholesterol efflux and secretes that control energy expenditure and adiposity. Consequently, muscle has a significant role in insulin sensitivity, the blood lipid profile, and energy balance. Accordingly, skeletal muscle plays a considerable role in the progression of dyslipidemia, diabetes, and obesity. These are risk factors for cardiovascular disease, which is the the foremost cause of global mortality (> 16.7 million deaths in 2003). Therefore, it is not surprising that orphan NRs and skeletal muscle are emerging as therapeutic candidates in the battle against dyslipidemia, diabetes, obesity, and cardiovascular disease.
Resumo:
Loading of the femoral neck (FN) is dominated by bending and compressive stresses. We hypothesize that adaptation of the FN to physical activity would be manifested in the cross-sectional area (CSA) and section modulus (Z) of bone, indices of axial and bending strength, respectively. We investigated the influence of physical activity on bone strength during adolescence using 7 years of longitudinal data from 109 boys and 121 girls from the Saskatchewan Paediatric Bone and Mineral Accrual Study (PBMAS). Physical activity data (PAC-Q physical activity inventory) and anthropometric measurements were taken every 6 months and DXA bone scans were measured annually (Hologic QDR2000, array mode). We applied hip structural analysis to derive strength and geometric indices of the femoral neck using DXA scans. To control for maturation, we determined a biological maturity age defined as years from age at peak height velocity (APHV). To account for the repeated measures within individual nature of longitudinal data, multilevel random effects regression analyses were used to analyze the data. When biological maturity age and body size (height and weight) were controlled, in both boys and girls, physical activity was a significant positive independent predictor of CSA and Z of the narrow region of the femoral neck (P < 0.05). There was no independent effect of physical activity on the subperiosteal width of the femoral neck. When leg length and leg lean mass were introduced into the random effects models to control for size and muscle mass of the leg (instead of height and weight), all significant effects of physical activity disappeared. Even among adolescents engaged in normal levels of physical activity, the statistically significant relationship between physical activity and indices of bone strength demonstrate that modifiable lifestyle factors like exercise play an important role in optimizing bone strength during the growing years. Physical activity differences were explained by the interdependence between activity and lean mass considerations. Physical activity is important for optimal development of bone strength. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
* To provide physical activity recommendations for people with cardiovascular disease, an Expert Working Group of the National Heart Foundation of Australia in late 2004 reviewed the evidence since the US Surgeon General’s Report: physical activity and health in 1996. * The Expert Working Group recommends that: o people with established clinically stable cardiovascular disease should aim, over time, to achieve 30 minutes or more of moderate intensity physical activity on most, if not all, days of the week; o less intense and even shorter bouts of activity with more rest periods may suffice for those with advanced cardiovascular disease; and o regular low-to-moderate level resistance activity, initially under the supervision of an exercise professional, is encouraged. * Benefits from regular moderate physical activity for people with cardiovascular disease include augmented physiological functioning, lessening of cardiovascular symptoms, enhanced quality of life, improved coronary risk profile, superior muscle fitness and, for survivors of acute myocardial infarction, lower mortality. * The greatest potential for benefit is in those people who were least active before beginning regular physical activity, and this benefit may be achieved even at relatively low levels of physical activity. * Medical practitioners should routinely provide brief, appropriate advice on physical activity to people with well-compensated, clinically stable cardiovascular disease.
Resumo:
Animal experiments have shown that Vitamin D plays a role in both brain development and adult brain function. The adult Vitamin D receptor null mutant mouse (VDR -/-) is reported to be less active and more anxious than wild-type litter mate controls and to have poor swimming ability. However, an anxious behavioural phenotype is inferred from differences in locomotor behaviour. This is a general problem in behavioural phenotyping where a neurological phenotype is inferred from changes in locomotion which will be affected by non-neurological factors, such as muscle fatigue. In this study of VDR -/-, we conducted a detailed examination of one form of motor behaviour, swimming, compared to wildtype littermate controls. Swimming was assessed using a forced swim test, a laneway swimming test and a watermaze test using a visible platform. Post-swimming activity was assessed by comparing grooming and rearing behaviour before, and 5 min after, the forced swimming test. We replicated previous findings in which VDR -/- mice demonstrate more sinking episodes than wildtype controls in the forced swim test but they were similar to controls in the time taken to swim a 1 m laneway, and in the time taken to reach a visible platform in the watermaze. Thus, the VDR -/- mice were able to swim but were not able to float. Grooming and rearing behaviour of the VDR -/- mice was similar to wildtype controls before the forced swim but the VDR -/- were much less active after the swim compared with wildtype mice which displayed high levels of grooming and rearing. We conclude that VDR -/- mice have muscular and motor impairments that do not affect their ability to swim but significantly alters the ability to float as well as their post-swimming activity. Differences in muscle strength may confound tests of activity that are used to infer an anxious phenotype. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
beta-Adrenergic receptor (beta-AR) agonists induce Nur77 mRNA expression in the C2C12 skeletal muscle cell culture model and elicit skeletal muscle hypertrophy. We previously demonstrated that Nur77 (NR4A1) is involved in lipolysis and gene expression associated with the regulation of lipid homeostasis. Subsequently it was demonstrated by another group that beta-AR agonists and cold exposure-induced Nur77 expression in brown adipocytes and brown adipose tissue, respectively. Moreover, NOR-1 (NR4A3) was hyperinduced by cold exposure in the nur77(-/-) animal model. These studies underscored the importance of understanding the role of NOR-1 in skeletal muscle. In this context we observed 30-480 min of beta-AR agonist treatment significantly and transiently increased expression of the orphan nuclear receptor NOR-1 in both mouse skeletal muscle tissue (plantaris) and C2C12 skeletal muscle cells. Specific beta(2)-and beta(3)-AR agonists had similar effects as the pan-agonist and were blocked by the beta-AR antagonist propranolol. Moreover, in agreement with these observations, isoprenaline also significantly increased the activity of the NOR-1 promoter. Stable exogenous expression of a NOR-1 small interfering RNA (but not the negative control small interfering RNA) in skeletal muscle cells significantly repressed endogenous NOR-1 mRNA expression and led to changes in the expression of genes involved in the control of lipid use and muscle mass underscored by a dramatic increase in myostatin mRNA expression. Concordantly the myostatin promoter was repressed by NOR-1 expression. In conclusion, NOR-1 is highly responsive to beta-adrenergic signaling and regulates the expression of genes controlling fatty acid use and muscle mass.
Resumo:
Patellofemoral pain (PFP) may be related to unfavorable knee joint loading. Delayed and/or reduced activity of vastus medialis obliquus (VMO) and different movement patterns have been identified in individuals with PFP in some studies, whereas other studies have failed to show a difference compared to non-affected controls. The discrepancy between study results may depend on the different tasks that have been investigated. No previous study has investigated these variables in postural responses to unpredictable perturbations in PFP. Whole body three dimensional kinematics and surface EMG of quadriceps muscles activation was studied in postural responses to unpredictable support surface translations in 17 women with PFP who were pain free at the time of testing, and 17 matched healthy controls. The results of the present study showed earlier onset of VMO activity and associated changes in kinematics to anterior platform translation in the PFP subjects. We suggest that the relative timing between the portions quadriceps muscles may be task specific and part of an adapted response in attempt to reduce knee joint loading. This learned response appears to remain even when the pain is no longer present.
Functional identity of receptors for proteolysis-inducing factor on human and murine skeletal muscle
Resumo:
Background: Cachexia in both mice and humans is associated with tumour production of a sulphated glycoprotein called proteolysis-inducing factor (PIF). In mice PIF binds with high affinity to a surface receptor in skeletal muscle, but little is known about the human receptor. This study compares the human PIF receptor with the murine. Methods: Human PIF was isolated from the G361 melanoma and murine PIF from the MAC16 colon adenocarcinoma. The human PIF receptor was isolated from human skeletal muscle myotubes. Protein synthesis and degradation induced by human and murine PIF was studied in human and murine skeletal muscle myotubes. Results: Both the human and murine PIF receptors showed the same immunoreactivity and Mr 40 000. Both murine and human PIF inhibited total protein synthesis and stimulated protein degradation in human and murine myotubes to about the same extent, and this was attenuated by a rabbit polyclonal antibody to the murine PIF receptor, but not by a non-specific rabbit antibody. Both murine and human PIF increased the activity of the ubiquitin-proteasome pathway in both human and murine myotubes, as evidenced by an increased 'chymotrypsin-like' enzyme activity, protein expression of the 20S and 19S proteasome subunits, and increased expression of the ubiquitin ligases MuRF1 and MAFbx, and this was also attenuated by the anti-mouse PIF receptor antibody. Conclusions: These results suggest that the murine and human PIF receptors are identical. © 2014 Cancer Research UK.
Resumo:
The mechanism by which the adipokine zinc-a2-glycoprotein (ZAG) increases the mass of gastrocnemius, but not soleus muscle of diabetic mice, has been evaluated both in vivo and in vitro. There was an increased phosphorylation of both double-stranded RNA-dependent protein kinase and its substrate, eukaryotic initiation factor-2a, which was attenuated by about two-thirds in gastrocnemius but not soleus muscle of ob/ob mice treated with ZAG (50 µg, iv daily) for 5 d. ZAG also reduced the expression of the phospho forms of p38MAPK and phospholipase A2, as well as expression of the ubiquitin ligases (E3) muscle atrophy F-box/atrogin-1 and muscle RING finger protein, and the increased activity of both caspase-3 and casapse-8 to values found in nonobese controls. ZAG also increased the levels of phospho serine-threonine kinase and mammalian target of rapamycin in gastrocnemius muscle and reduced the phosphorylation of insulin receptor substrate-1 (Ser307) associated with insulin resistance. Similar changes were seen with ZAG when murine myotubes were incubated with high glucose concentrations (10 and 25 mm), showing that the effect of ZAG was direct. ZAG produced an increase in cAMP in murine myotubes, and the effects of ZAG on protein synthesis and degradation in vitro could be replicated by dibutyryl cAMP. ZAG increased cAMP levels of gastrocnemius but not soleus muscle. These results suggest that protein accretion in skeletal muscle in response to ZAG may be due to changes in intracellular cAMP and also that ZAG may have a therapeutic application in the treatment of muscle wasting conditions.
Resumo:
Purpose: Pharmacological intervention with peripheral sympathetic transmission at ciliary smooth muscle neuro-receptor junctions has been used against a background of controlled parasympathetic activity to investigate the characteristics of autonomic control of ocular accommodation. Methods: A continuously recording infrared optometer was used to measure accommodation on a group of five visually normal emmetropic subjects under open- and closed-loop conditions. A double-blind protocol between saline, timolol and betaxolol was used to differentiate between the localised action on ciliary smooth muscle and effects induced by changes in stimulus conditions. Data were collected before and 45 min following the instillation of saline, timolol or betaxolol. Open-loop post-task decay was investigated following 3 min sustained near fixation of a stimulus placed 3 D above the subject's pre-task tonic accommodation level. Closed-loop dynamic responses were recorded for each treatment condition while subjects viewed sinusoidally (0.05-0.6 Hz) or stepwise vergence-modulated targets over a 2 D range (2-4 D). Results: Open-loop data demonstrate a rapid post-task regression to pre-task tonic accommodation levels for saline and betaxolol control conditions. A slow positive post-task shift was induced by timolol indicating that sympathetic inhibition contributes to accommodative adaptation during sustained near vision. Closed-loop accommodation responses to temporally modulated sinusoidal stimuli showed characteristic features for both saline and betaxolol control conditions. Timolol induced a reduced gain for low- and mid-temporal frequencies (< 0.3 Hz) but did not affect the response at higher temporal frequencies. Response times to stepwise stimuli increased following the instillation of timolol for the near-to-far fixation condition compared with the controls and was related to the period of sustained prior fixation. Conclusions: Modulation of accommodation under open- and closed-loop conditions by a non-selective β-blocker is consistent with the temporal and inhibitory features of sympathetic innervation to ciliary smooth muscle. Although parasympathetic innervation predominates there is evidence to support a role for sympathetic innervation in the control of ocular accommodation. © 2002 The College of Optometrists.
Resumo:
Both tumor necrosis factor-alpha (TNF-alpha)/interferon-gamma (IFN-gamma) and angiotensin II (ANG II) induced an increase in total protein degradation in murine myotubes, which was completely attenuated by treatment with beta-hydroxy-beta-methylbutyrate (HMB; 50 microM). There was an increase in formation of reactive oxygen species (ROS) within 30 min, as well as an increase in the activity of both caspase-3 and -8, and both effects were attenuated by HMB. Moreover, inhibitors of caspase-3 and -8 completely attenuated both ROS formation and total protein degradation induced by TNF-alpha/IFN-gamma and ANG II. There was an increased autophosphorylation of double-stranded RNA-dependent protein kinase (PKR), which was attenuated by the specific caspase-3 and -8 inhibitors. Neither ROS formation or protein degradation occurred in myotubes expressing a catalytically inactive PKR variant, PKRDelta6, in response to TNF-alpha/IFN-gamma, compared with myotubes expressing wild-type PKR, although there was still activation of caspase-3 and -8. HMB also attenuated activation of PKR, suggesting that it was important in protein degradation. Formation of ROS was attenuated by rotenone, an inhibitor of the mitochondrial electron transport chain, nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase, and SB 203580, a specific inhibitor of p38 mitogen-activated protein kinase (p38 MAPK), which also attenuated total protein degradation. Activation of p38 MAPK by PKR provides the link to ROS formation. These results suggest that TNF-alpha/IFN-gamma and ANG II induce muscle protein degradation by a common signaling pathway, which is attenuated by HMB, and that this involves the initial activation of caspase-3 and -8, followed by autophosphorylation and activation of PKR, which then leads to increased ROS formation via activation of p38 MAPK. Increased ROS formation is known to induce protein degradation through the ubiquitin-proteasome pathway.
Resumo:
Proteolysis-inducing factor (PIF) is a sulfated glycoprotein produced by cachexia-inducing tumors, which induces atrophy of skeletal muscle. PIF has been shown to bind specifically with high affinity (Kd, in nanomolar) to sarcolemma membranes from skeletal muscle of both the mouse and the pig, as well as murine myoblasts and a human muscle cell line. Ligand binding was abolished after enzymatic deglycosylation, suggesting that binding was mediated through the oligosaccharide chains in PIF. Chondroitin sulfate, but not heparan or dermatan sulfate, showed competitive inhibition (Kd, 1.1 × 10-7 mol/L) of binding of PIF to the receptor, suggesting an interaction with the sulfated oligosaccharide chains. Ligand blotting of [ 35S]PIF to triton solublized membranes from C2C 12 cells provided evidence for a binding protein of apparent M r of ∼40,000. Amino acid sequence analysis showed the PIF receptor to be a DING protein. Antisera reactive to a 19mer from the N-terminal amino acid residues of the binding protein attenuated protein degradation and activation of the ubiquitin-proteasome pathway induced by PIF in murine myotubes. In addition, the antisera was highly effective in attenuating the decrease in body weight in mice bearing the MAC16 tumor, with a significant increase in muscle wet weight due to an increase in the rate of protein synthesis, together with a reduction in protein degradation through attenuation of the increased proteasome expression and activity. These results confirm that the PIF binding protein has a functional role in muscle protein atrophy in cachexia and that it represents a potential new therapeutic target. ©2007 American Association for Cancer Research.