867 resultados para Response time
Resumo:
Dicer is a member of the RNAase III family which catalyzes the cleavage of double-stranded RNA to small interfering RNAs and micro RNAs, and then directs sequence-specific gene silencing. In this paper, the full-length cDNA of Dicer-1 was cloned from white shrimp Litopenaeus vannamei (designated as LvDcr1). It was of 7636 bp, including a poly A tail, a 5' UTR of 136 bp, a 3' UTR of 78 bp, and an open reading frame (ORF) of 7422 bp encoding a putative protein of 2473 amino acids. The predicted amino acid sequence comprised all recognized functional domains found in other Dicer-1 homologues and showed the highest (97.7%) similarity to the Dicer-1 from tiger shrimp Penaeus mondon. Quantitative real-time PCR was employed to investigate the tissue distribution of LvDcr1 mRNA, and its expression in shrimps under virus challenge and larvae at different developmental stages. The LvDcr1 mRNA could be detected in all examined tissues with the highest expression level in hemocyte, and was up-regulated in hemocytes and gills after virus injection. These results indicated that LvDcr1 was involved in antiviral defense in adult shrimp. During the developmental stages from fertilized egg to postlarva VII, LvDcr1 was constitutively expressed at all examined development stages, but the expression level varied significantly. The highest expression level was observed in fertilized eggs and followed a decrease from fertilized egg to nauplius I stage. Then, the higher levels of expression were detected at nauplius V and postlarva stages. LvDcr1 expression regularly increased at the upper phase of nauplius, zoea and mysis stages than their prophase. The different expression of LvDcr1 in the larval stages could provide clues for understanding the early innate immunity in the process of shrimp larval development. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A gene-clone-library-based molecular approach was used to study the nirS-encoding bacteria-environment relationship in the sediments of the eutrophic Jiaozhou Bay. Diverse nirS sequences were recovered and most of them were related to the marine cluster I group, ubiquitous in estuarine, coastal, and marine environments. Some NirS sequences were unique to the Jiaozhou Bay, such as the marine subcluster VIIg sequences. Most of the Jiaozhou Bay NirS sequences had their closest matches originally detected in estuarine and marine sediments, especially from the Chesapeake Bay, indicating similarity of the denitrifying bacterial communities in similar coastal environments in spite of geographical distance. Multivariate statistical analyses indicated that the spatial distribution of the nirS-encoding bacterial assemblages is highly correlated with environmental factors, such as sediment silt content, NH4+ concentration, and OrgC/OrgN. The nirS-encoding bacterial assemblages in the most hypernutrified stations could be easily distinguished from that of the least eutrophic station. For the first time, the sedimentological condition was found to influence the structure and distribution of the sediment denitrifying bacterial community.
Resumo:
A mechanistic model is developed to present the photosynthetic response of phytoplankton to irradiance at the physiological level. The model is operated on photosynthetic units (PSU), and each PSU is assumed to have two states: reactive and activated. Light absorption that drives a reactive PSU into the activated state results from the effective absorption of the PSU. Transitions between the two states are asymmetrical in rate. A PSU in the reactive state becomes activated much faster than it recovers from the activated state to the reactive one. The turnover time for an activated PSU to transit into the reactive one is defined by the turnover time of the electron transport chain. The present model yields a photosynthesis-irradiance curve (PE-curve) in a hyperbola, which is described by three physiological parameters: effective cross-section (sigma (PSII)), turnover time of electron transport chain (tau) and number of PSUs (N). The PE-curve has an initial slope of sigma (PSII) x N, a half-saturated irradiance of 1/(sigma (PSII)), and a maximal photosynthetic rate of Nlc at the saturated irradiance. The PE-curve from the present model is comparable to the empirical function based on the target theory described by the Poisson distribution. (C) 2001 Academic Press.
Resumo:
The effects of acute temperature challenge on some immune parameters of haemocyte in Zhikong scallop, Chlamys farreri, recognised as a temperature sensitive bivalve species, were evaluated over a short period of time. Scallops were suddenly transferred from 17 degrees C to 11 degrees C, 23 degrees C and 28 degrees C for a period of 72 h. Total haemocyte count (THC), percentage of phagocytic haemocytes, reactive oxygen species (ROS) production, acid phosphatase (ACP) and superoxide dismutase (SOD) activities (in both haemocyte lysate and cell-free haemolymph) were chosen as biomarkers of temperature stress. Results demonstrated that the percentage of phagocytic haemocytes and ACP activity in cell-free haemolymph of scallops challenged at 28 degrees C for 72 h significantly decreased. By contrast, reactive oxygen species production by haemocytes increased when compared to the initial values. It is concluded that haemocyte activities of C. farreri appear to be compromised when scallops were transferred from 17 degrees C to 28 degrees C. Meanwhile, no obvious negative effect of acute temperature stress was detected on haemocyte activities of C. farreri challenged at 11 degrees C, which highlighted the high tolerance of scallops to acute decrease of seawater temperatures. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
This study attempts to model alpine tundra vegetation dynamics in a tundra region in the Qinghai Province of China in response to global warming. We used Raster-based cellular automata and a Geographic Information System to study the spatial and temporal vegetation dynamics. The cellular automata model is implemented with IDRISI's Multi-Criteria Evaluation functionality to simulate the spatial patterns of vegetation change assuming certain scenarios of global mean temperature increase over time. The Vegetation Dynamic Simulation Model calculates a probability surface for each vegetation type, and then combines all vegetation types into a composite map, determined by the maximum likelihood that each vegetation type should distribute to each raster unit. With scenarios of global temperature increase of I to 3 degrees C, the vegetation types such as Dry Kobresia Meadow and Dry Potentilla Shrub that are adapted to warm and dry conditions tend to become more dominant in the study area.
Resumo:
A study was carried out to examine the effect of dynamic photosynthetically active photon flux density (PPFD) on photoinhibition and energy use in three herbaceous species, prostrate Saussurea superba, erect-leaved S. katochaete, and half-erect-leaved Gentiana straminea, from the Qinghai-Tibet Plateau. Chlorophyll fluorescence response was measured under each of three sets of high-low PPFD combinations: 1700-0, 1400-300, and 1200-500 mu mol m(-2) s(-1), illuminating in four dynamic frequencies: 1, 5, 15, and 60 cycles per 2 h. The total light exposure time was 2h and the integrated PPFD was the same in all treatments. The highest frequency of PPFD fluctuation resulted in the lowest photochemical activity, the highest level of non-photochemical quenching, and the greatest decrease of F-v/F-m (maximal photochemical efficiency of PSII). The 5 and 15 cycles per 2h treatments resulted in higher photochemical activity than the 1 cycle per 2h treatment. The 1700-0 PPFD combination led to the lowest photochemical activity and more serious photoinhibition in all species. S. superba usually exhibited the highest photochemical activity and CO2 uptake rate, the lowest reduction of F-v/F-m,F- and the smallest fraction of energy in thermal dissipation. With similar fractions of thermal dissipation, S. katochaete had relatively less photoinhibition than G. straminea owing to effective F-o quenching. The results suggest that high frequency of fluctuating PPFD generally results in photoinhibition, which is more serious under periods of irradiation with high light intensity. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Floral closure may be induced by pollination and various other factors, but is rarely studied comprehensively. Different kinds of floral closure should have various effects on reproductive fitness of plants. Two contrasting types of floral closure were observed in the flowers of Gentiana straminea Maxim. in the eastern Qinghai-Tibetan Plateau. The first type occurred prior to pollination during both gender phases, in response mainly to decreasing air temperatures. Flowers closed when decreasing temperatures approached 20 degrees C and subsequently began to reopen the following day during mid-morning when air temperatures warmed to approximately 13-15 degrees C. This kind of floral closure can protect pollen grains on either stamens or stigmas, increasing fitness of both male and female. Following pollination, permanent floral closure occurred, although there was a delay between the dates of pollination and permanent closure, during which flowers continued to show temporary closure in response to low temperature episodes. The time required for permanent, pollination-induced closure varied according to the age of the gender phase, including a prolonged time before closure if pollination occurred early in the female phase. The retaining of permanent closed flowers increased both approaching (to inflorescences) and visiting (to unpollinated flowers) frequencies of individual plants when with fewer open flowers and the persisting corolla is further beneficial for seed sets of these pollinated flowers. Thus, two separate types of floral closure, one in response to environmental cues and the other in response to the age of each gender stage, appeared to have a strong influence on reproductive fitness in this species. These results revealed a different adaptive strategy of alpine plants in the sexual reproduction assurance in addition to the well-known elevated floral longevity, dominant role of more effective pollinators and increased reproduction allocation in the arid habitats.
Resumo:
A quantitative analysis of the individual compounds in tobacco essential oils is performed by comprehensive two-dimensional gas chromatography (GC x GC) combined with flame ionization detector (FID). A time-of-flight mass spectrometer (TOF/MS) was coupled to GC x GC for the identification of the resolved peaks. The response of a flame ionization detector to different compound classes was calibrated using multiple internal standards. In total, 172 compounds were identified with good match and 61 compounds with high probability value were reliably quantified. For comparative purposes, the essential oil sample was also quantified by one-dimensional gas chromatography-mass spectrometry (GC/MS) with multiple internal standards method. The results showed that there was close agreement between the two analysis methods when the peak purity and match quality in one-dimensional GC/MS are high enough. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Objective: the aim of this study was to quantify mast cells at different time intervals after partial Achilles tendon rupture in rats treated with low-level laser therapy (LLLT). Background data: There is a high incidence of lesions and ruptures in the Achilles tendon that can take weeks and even months to heal completely. As the mast cells help in the healing repair phase, and LLLT has favorable effects on this tissue repair process, study of this modality on the quantity of mastocytes in the ruptured tendon is relevant. Methods: Sixty Wistar rats were subjected to partial Achilles' tendon rupture by direct trauma, randomized into 10 groups, and then divided into the group treated with 80mW aluminum gallium arsenide infrared laser diode, continuous wave, 2.8W/cm(2) power density, 40J/cm(2) energy density, and 1.12J total energy, and the simulation group. Both the groups were subdivided according to the histological assessment period of the sample, either 6h, 12h, 24h, 2 days, or 3 days after the rupture, to quantify the mastocytes in the Achilles' tendon. Results: the group subjected to LLLT presented a greater quantity of mastocytes in the periods of 6h, 12h, 24h, 2 days, and 3 days after rupture, compared with the simulation groups, but differences were detected between the sample assessment periods only in the simulation group. Conclusions: LLLT was shown to increase the quantity of mastocytes in the assessment periods compared with the simulation groups.
Resumo:
'Data retention and the war against terrorism - a considered and proportionate response'. Journal of Information Law & Technology 2004 (3) RAE2008
Resumo:
Thatcher, Rhys, et al., 'Influence of blood donation on O-2 uptake on-kinetics, peak O-2 uptake and time to exhaustion during severe-intensity cycle exercise in humans', Experimental Physiology (2006) 91(3) pp.499-509 RAE2008
Resumo:
Burnley, M., Doust, J. and Jones, A. (2006). Time required for the restoration of normal heavy exercise Vo(2) kinetics following prior heavy exercise. Journal of Applied Physiology. 101(5), pp.1320-1327 RAE2008
Resumo:
This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.
Resumo:
Aim: This thesis examines a question posed by founding occupational scientist Dr. Elizabeth Yerxa (1993) – “what is the relationship between human engagement in a daily round of activity (such as work, play, rest and sleep) and the quality of life people experience including their healthfulness” (p. 3). Specifically, I consider Yerxa’s question in relation to the quotidian activities and health-related quality of life (HRQoL) of late adolescents (aged 15 - 19 years) in Ireland. This research enquiry was informed by an occupational perspective of health and by population health, ecological, and positive youth development perspectives. Methods: This thesis is comprised of five studies. Two scoping literature reviews informed the direction of three empirical studies. In the latter, cross-sectional time use and HRQoL data were collected from a representative sample of 731 school-going late adolescents (response rate 52%) across 28 schools across Cork city and county (response rate 76%). In addition to socio-demographic data, time use data were collected using a standard time diary instrument while a nationally and internationally validated instrument, the KIDSCREEN-52, was used to measure HRQoL. Variable-centred and person-centred analyses were used. Results: The scoping reviews identified the lack of research on well populations or an adolescent age range within occupational therapy and occupational science; limited research testing the popular assumption that time use is related to overall well-being and quality of life; and the absence of studies that examined adolescent 24-hour time use and quality of life. Established international trends were mirrored in the findings of the examination of weekday and weekend time use. Aggregate-level, variable-centred analyses yielded some significant associations between HRQoL and individual activities, independent of school year, school location, family context, social class, nationality or diary day. The person-centred analysis of overall time use identified three male profiles (productive, high leisure and all-rounder) and two female profiles (higher study/lower leisure and moderate study/higher leisure). There was tentative support for the association between higher HRQoL and more balanced time use profiles. Conclusion: The findings of this thesis highlight the gendered nature of adolescent time use and HRQoL. Participation in daily activities, singly and in combination, appears to be associated with HRQoL. However, the nature of this relationship is complex. Individually and collectively, adolescents need to be educated and supported to create health through their everyday patterns of doing.
Resumo:
In order to determine the size-resolved chemical composition of single particles in real-time an ATOFMS was deployed at urban background sites in Paris and Barcelona during the MEGAPOLI and SAPUSS monitoring campaigns respectively. The particle types detected during MEGAPOLI included several carbonaceous species, metal-containing types and sea-salt. Elemental carbon particle types were highly abundant, with 86% due to fossil fuel combustion and 14% attributed to biomass burning. Furthermore, 79% of the EC was apportioned to local emissions and 21% to continental transport. The carbonaceous particle types were compared with quantitative measurements from other instruments, and while direct correlations using particle counts were poor, scaling of the ATOFMS counts greatly improved the relationship. During SAPUSS carbonaceous species, sea-salt, dust, vegetative debris and various metal-containing particle types were identified. Throughout the campaign the site was influenced by air masses altering the composition of particles detected. During North African air masses the city was heavily influenced by Saharan dust. A regional stagnation was also observed leading to a large increase in carbonaceous particle counts. While the ATOFMS provides a list of particle types present during the measurement campaigns, the data presented is not directly quantitative. The quantitative response of the ATOFMS to metals was examined by comparing the ion signals within particle mass spectra and to hourly mass concentrations of; Na, K, Ca, Ti, V, Cr, Mn, Fe, Zn and Pb. The ATOFMS was found to have varying correlations with these metals depending on sampling issues such as matrix effects. The strongest correlations were observed for Al, Fe, Zn, Mn and Pb. Overall the results of this work highlight the excellent ability of the ATOFMS in providing composition and mixing state information on atmospheric particles at high time resolution. However they also show its limitations in delivering quantitative information directly.