980 resultados para Resonant tunneling
Resumo:
A series of four novel n-type molecules has been synthesized. Unlike previous approaches, the end group of these molecules was fixed and the molecular core was varied. The resulting materials were thoroughly analyzed. Electronic properties were derived from photoemission spectroscopy, optical properties were derived with the help of optical spectroscopy, and the structure of thin films on Au(111) was derived by scanning tunneling microscopy (STM). In addition, prototypical organic field-effect transistors (OFETs) (forming n-channels in OFETs) have been fabricated and tested. The correlation between the device performance of the respective OFETs (i.e., electron mobility) and their electronic as well as structural properties was investigated. It turned out that a combination of beneficial electronic and structural properties provides the best results. These findings are important for the design of new materials for future device applications.
Resumo:
Summary form only given. Geometric simplicity, efficiency and polarization purity make slot antenna arrays ideal solutions for many radar, communications and navigation applications, especially when high power, light weight and limited scan volume are priorities. Resonant arrays of longitudinal slots have a slot spacing of one-half guide wavelength at the design frequency, so that the slots are located at the standing wave peaks. Planar arrays are implemented using a number of rectangular waveguides (branch line guides), arranged side-by-side, while waveguides main lines located behind and at right angles to the branch lines excite the radiating waveguides via centered-inclined coupling slots. Planar slotted waveguide arrays radiate broadside beams and all radiators are designed to be in phase.
Resumo:
Achieving high efficiency with improved power transfer range and misalignment tolerance is the major design challenge in realizing Wireless Power Transfer (WPT) systems for industrial applications. Resonant coils must be carefully designed to achieve highest possible system performance by fully utilizing the available space. High quality factor and enhanced electromagnetic coupling are key indices which determine the system performance. In this paper, design parameter extraction and quality factor optimization of multi layered helical coils are presented using finite element analysis (FEA) simulations. In addition, a novel Toroidal Shaped Spiral (TSS) coil is proposed to increase power transfer range and misalignment tolerance. The proposed shapes and recommendations can be used to design high efficiency WPT resonator in a limited space.
Resumo:
A high-frequency-link micro inverter is proposed with a front-end dual inductor push-pull converter and a grid-connected half-wave cycloconverter. Pulse width modulation is used to control the front-end converter and phase shift modulation is used at the back-end converter to obtain grid synchronized output current. A series resonant circuit and high-frequency transformer are used to interface the front-end and the back-end converters. The operation of the proposed micro-inverter in grid-connected mode is validated using MATLAB/Simpower simulation. Experimental results are provided to further validate the operation.
Resumo:
Introduced in this paper is a Bayesian model for isolating the resonant frequency from combustion chamber resonance. The model shown in this paper focused on characterising the initial rise in the resonant frequency to investigate the rise of in-cylinder bulk temperature associated with combustion. By resolving the model parameters, it is possible to determine: the start of pre-mixed combustion, the start of diffusion combustion, the initial resonant frequency, the resonant frequency as a function of crank angle, the in-cylinder bulk temperature as a function of crank angle and the trapped mass as a function of crank angle. The Bayesian method allows for individual cycles to be examined without cycle-averaging|allowing inter-cycle variability studies. Results are shown for a turbo-charged, common-rail compression ignition engine run at 2000 rpm and full load.
Resumo:
We report a new organic photovoltaics (OPV) design, a wrapped OPV, which can circumvent both challenges of short exciton diffusion length [1], and low charge carrier mobility [2] of organic semiconductors by orienting the OPV vertically, to capture; manage; guide and use all incident photons and therefore, generate higher current. Resonant light, on being transmitted into a wrapped OPV, makes multiple passes through the photoactive layer and is absorbed completely, thus achieving benefits of thick photoactive layer while maintaining its ultra-thin thickness requirement. The current density generated from a wrapped OPV is twice than that generated by a similar OPV with flat orientation.
Resumo:
This paper presents preliminary results of an investigation into the detection of partial discharges on the rise of impulse voltages from a point-to-plane gap in SF6. A parallel RC detection impedance is placed in the earth path of a point. Computer simulations are done to determine the values of R and C that will result in the smallest impulse voltage signal and the largest discharge signal across the detection impedance. These simulations and the experimental work show that the impulse voltage signal can not be sufficiently attenuated during the rise time of the applied voltage impulse using the RC detection impedance alone. An alternative discharge detection method is proposed in which a resonant partial discharge coupler is used. Elimination of noise and the impulse voltage signal can be achieved by shorting the coupler plate to the ground plane in the middle of the disk. However, due to the bandwidth of the measuring equipment and noise from the impulse generator it was not possible to detect discharges on the rising edge of a 1.5s voltage impulse using a coupler shorted in the middle. It was found that for this particular coupler, with no shorting points, and if the rising edge of the voltage impulse is longer than 5us, (10us) PD activity can be detected on the rising edge.
Resumo:
According to some embodiments, the present invention provides a novel photovoltaic solar cell system from photovoltaic modules that are vertically arrayed in a stack format using thin film semiconductors selected from among org. and inorg. thin film semiconductors. The stack cells may be cells that are produced in a planar manner, then vertically oriented in an angular form, also termed herein tilted, to maximize the light capturing aspects. The use of a stack configuration system as described herein allows for the use of a variety of electrode materials, such as transparent materials or semitransparent metals. Light concn. can be achieved by using fresnel lens, parabolic mirrors or derivs. of such structures. The light capturing can be controlled by being reflected back and forth in the photovoltaic system until significant quantities of the resonant light is absorbed. Light that passes to the end and can be reflected back through the device by beveling or capping the end of the device with a different refractive index material, or alternatively using a reflective surface. The contacting between stacked cells can be done in series or parallel. According to some embodiments, the present invention uses a concentrator architecture where the light is channeled into the cells that contain thermal fluid channels (using a transparent fluid such as water) to absorb and hence reduce the thermal energy generation.
Resumo:
Fiber Bragg Grating (FBG) accelerometers using transverse forces with an inertial object placed at the middle of the FBG have a high sensitivity but low resonant frequency. The resonant frequency 26 Hz and sensitivity at 6 Hz 1.29 nm/g were reported based on a 50mm-long FBG accelerometer. We demonstrate that the first FBG accelerometer based on a transversely rotating stick, which can, at the same or even larger size, keep the high sensitivity and significantly increase the low resonant frequency. In our experiments, a 77.5mm-long FBG accelerometer has achieved a similar sensitivity but 65% higher resonant frequency. This novel structure not only significantly widens the potential applications of FBG accelerometers by increasing their resonant frequencies but also provides a new route to design other accelerometers, e.g. micro accelerometers.
Resumo:
The reliability of micro inverters is an important factor as it would be necessary to reduce cost and maintenance of the small and medium scale distributed PV power conversion systems. Electrolytic capacitors and active power decouple circuits can be avoided in micro inverters with the use of medium voltage DC-link. Such a DC-link based micro inverter is proposed with a front-end dual inductor current-fed push-pull converter. The primary side power switches of the front-end converter have reduced switching losses due to multi-resonant operation. In addition, the voltage and current stresses on the diodes of the secondary diode voltage doubler rectifier are reduced due to the presence of a series resonant circuit in the front-end converter. The operation of the proposed micro inverter is explained using an in-depth analysis of the switching characteristics of the power semiconductor devices. The theoretical analysis of the proposed micro inverter is validated using simulation result.
Resumo:
Approximate calculations are reported on pyrene within the PPP model Hamiltonian using a novel restricted CI scheme which employs both molecular orbital and valence bond techniques. Also reported are detailed full CI results of the PPP model on 2,7-dihydropyrene obtained using the valence bond method. Spectral studies, charge and spin density calculations in ground and excited states, and ring current calculations in the ground state of the molecules are presented. In pyrene, the calculated excitation energies are in good agreement with experiment. The closed structure pi-conjugated molecule pyrene appears to show smaller distortions from the ground state geometry compared with the open structure pi-conjugated molecule 2,7-dihydropyrene. The ground state equilibrium structure of 2,7-dihydropyrene can be viewed as two hexatriene molecules connected by a vinyl crosslink, as is evident from bond order and ring current calculations. This is consistent with the only Kekule resonant structure possible for this molecule.
Resumo:
An electromagnetically coupled feed arrangement is proposed for simultaneously exciting multiple concentric ring antennas for multi-frequency operation. This has a multi-layer dielectric configuration in which a transmission line is embedded below the layer containing radiating rings. Energy coupled to these rings from the line beneath is optimised by suitably adjusting the location and dimensions of stubs on the line. It has been shown that the resonant frequencies of these rings do not change as several of these single-frequency antennas are combined to form a multi-resonant antenna. Furthermore, all radiators are forced to operate at their primary mode and some harmonics of the lower resonant frequency rings appearing within the frequency range are suppressed when combined. The experimental prototype antenna has three resonant frequencies at which it has good radiation characteristics.
Resumo:
Monitoring gas purity is an important aspect of gas recovery stations where air is usually one of the major impurities. Purity monitors of Katherometric type ate commercially available for this purpose. Alternatively, we discuss here a helium gas purity monitor based on acoustic resonance of a cavity at audio frequencies. It measures the purity by monitoring the resonant frequency of a cylindrical cavity filled with the gas under test and excited by conventional telephone transducers fixed at the ends. The use of the latter simplifies the design considerably. The paper discusses the details of the resonant cavity and the electronic circuit along with temperature compensation. The unit has been calibrated with helium gas of known purities. The unit has a response time of the order of 10 minutes and measures the gas purity to an accuracy of 0.02%. The unit has been installed in our helium recovery system and is found to perform satisfactorily.
Resumo:
D.C. electrical conductivity of polyaniline (33%,40%) blended with PMMA was measured from 5K to 300mK. The conductivity behaviour is consistent with fluctuation induced tunneling. Magneto-resistance (MR) was measured between 300K and 2K. From 20K to 2K, a large positive MR was observed. At 2K, for low magnetic fields (<1 Tesla), a deviation from the normal H-2 behaviour was observed.
Resumo:
We have studied the low magnetic field high temperature region of the H-T phase diagram of Bi2Sr2CaCu2O8 single crystals using the technique of non-resonant rf response at a frequency of 20 MHz. With H(rf)parallel to a, H parallel to c, the isothermal magnetic field scans below T-c show that the frequency f(H) of the tank circuit decreases continuously with increase in H before saturating at H similar to H-D(T). Such a decrease in f(H) reflects increasing rf penetration into the weakly screened region between CuO bilayers. The saturation of f(H) at its lowest value for H similar to H-D(T) indicates complete rf penetration land hence the disappearance of field dependence) due to the vanishing of the screening rf currents I-rf(c) in those regions or equivalently when the phase coherence between adjacent superconducting layers vanishes. Therefore H,(T) represents the decoupling of the adjacent superconducting bilayers, and hence also a 3D to 2D decoupling transition of the vortex structure. Simultaneous monitoring of the field dependent rf power dissipation P(H) shows a maximum in dP/dH at H-D(T). The observed H-D(T) line in many crystals is in excellent agreement with the (l/t-1) behavior proposed for decoupling.