911 resultados para Renewable diesels


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Growth in aviation has resulted in large airports that can be described as Airport Metropolises. This thesis reviews a variety of sustainable energy options that are suitable for such airports, and presents a decision support framework that can be used to guide decision makers towards the adoption of sound sustainable energy projects and practices. The thesis demonstrates use of the decision support framework via a number of case studies and outlines a methodology which could be incorporated within a Decision Support System.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

India's energy challenges are multi-pronged. They are manifested through growing demand for modern energy carriers, a fossil fuel dominated energy system facing a severe resource crunch, the need for creating access to quality energy for the large section of deprived population, vulnerable energy security, local and global pollution regimes and the need for sustaining economic development. Renewable energy is considered as one of the most promising alternatives. Recognizing this potential, India has been implementing one of the largest renewable energy programmes in the world. Among the renewable energy technologies. bioenergy has a large diverse portfolio including efficient biomass stoves, biogas, biomass combustion and gasification and process heat and liquid fuels. India has also formulated and implemented a number of innovative policies and programmes to promote bioenergy technologies. However, according to some preliminary studies, the success rate is marginal compared to the potential available. This limited success is a clear indicator of the need for a serious reassessment of the bioenergy programme. Further, a realization of the need for adopting a sustainable energy path to address the above challenges will be the guiding force in this reassessment. In this paper an attempt is made to consider the potential of bioenergy to meet the rural energy needs: (I) biomass combustion and gasification for electricity; (2) biomethanation for cooking energy (gas) and electricity; and (3) efficient wood-burning devices for cooking. The paper focuses on analysing the effectiveness of bioenergy in creating this rural energy access and its sustainability in the long run through assessing: the demand for bioenergy and potential that could be created; technologies, status of commercialization and technology transfer and dissemination in India; economic and environmental performance and impacts: bioenergy policies, regulatory measures and barrier analysis. The whole assessment aims at presenting bioenergy as an integral part of a sustainable energy strategy for India. The results show that bioenergy technology (BET) alternatives compare favourably with the conventional ones. The cost comparisons show that the unit costs of BET alternatives are in the range of 15-187% of the conventional alternatives. The climate change benefits in terms of carbon emission reductions are to the tune of 110 T C per year provided the available potential of BETs are utilized.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the face of increasing CO2 emissions from conventional energy (gasoline), and the anticipated scarcity of Crude oil, a worldwide effort is underway for cost-effective renewable alternative energy sources. Here, we review a simple line of reasoning: (a) geologists claim that Much crude oil comes from diatoms; (b) diatoms do indeed make oil; (c) agriculturists Claim that diatoms could make 10-200 times as much oil per hectare as oil seeds; and (d) therefore, sustainable energy could be made from diatoms. In this communication, we propose ways of harvesting oil from diatoms, using biochemical engineering and also a new solar panel approach that utilizes genomically modifiable aspects of diatom biology, offering the prospect of ``milking'' diatoms for Sustainable energy by altering them to actively secrete oil products. Secretion by and milking of diatoms may provide a way around the puzzle of how to make algae that both grow quickly and have a very high oil content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of stochastic wind power has accentuated a challenge for power system stability assessment. Since the power system is a time-variant system under wind generation fluctuations, pure time-domain simulations are difficult to provide real-time stability assessment. As a result, the worst-case scenario is simulated to give a very conservative assessment of system transient stability. In this study, a probabilistic contingency analysis through a stability measure method is proposed to provide a less conservative contingency analysis which covers 5-min wind fluctuations and a successive fault. This probabilistic approach would estimate the transfer limit of a critical line for a given fault with stochastic wind generation and active control devices in a multi-machine system. This approach achieves a lower computation cost and improved accuracy using a new stability measure and polynomial interpolation, and is feasible for online contingency analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A decentralized emission inventories are prepared for road transport sector of India in order to design and implement suitable technologies and policies for appropriate mitigation measures. Globalization and liberalization policies of the government in 90's have increased the number of road vehicles nearly 92.6% from 1980-1981 to 2003-2004. These vehicles mainly consume non-renewable fossil fuels, and are a major contributor of green house gases, particularly CO2 emission. This paper focuses on the statewise road transport emissions (CO2, CH4, CO, N-x, N2O, SO2, PM and HC) using region specific mass emission factors for each type of vehicles. The country level emissions (CO2, CH4, CO, NOx, N2O, SO2 and NMVOC) are calculated for railways, shipping and airway, based on fuel types. In India, transport sector emits an estimated 258.10 Tg Of CO2, of which 94.5% was contributed by road transport (2003-2004). Among all the states and Union Territories, Maharashtra's contribution is the largest, 28.85 Tg (11.8%) Of CO2, followed by Tamil Nadu 26.41 Tg(10.8%), Gujarat 23.31 Tg(9.6%), Uttar Pradesh 17.42 Tg(7.1%), Rajasthan 15.17 Tg (6.22%) and, Karnataka 15.09 Tg (6.19%). These six states account for 51.8% of the CO2 emissions from road transport.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing concern about global climate warming has accelerated research into renewable energy sources that could replace fossil petroleum-based fuels and materials. Bioethanol production from cellulosic biomass by fermentation with baker s yeast Saccharomyces cerevisiae is one of the most studied areas in this field. The focus has been on metabolic engineering of S. cerevisiae for utilisation of the pentose sugars, in particular D-xylose that is abundant in the hemicellulose fraction of biomass. Introduction of a heterologous xylose-utilisation pathway into S. cerevisiae enables xylose fermentation, but ethanol yield and productivity do not reach the theoretical level. In the present study, transcription, proteome and metabolic flux analyses of recombinant xylose-utilising S. cerevisiae expressing the genes encoding xylose reductase (XR) and xylitol dehydrogenase (XDH) from Pichia stipitis and the endogenous xylulokinase were carried out to characterise the global cellular responses to metabolism of xylose. The aim of these studies was to find novel ways to engineer cells for improved xylose fermentation. The analyses were carried out from cells grown on xylose and glucose both in batch and chemostat cultures. A particularly interesting observation was that several proteins had post-translationally modified forms with different abundance in cells grown on xylose and glucose. Hexokinase 2, glucokinase and both enolase isoenzymes 1 and 2 were phosphorylated differently on the two different carbon sources studied. This suggests that phosphorylation of glycolytic enzymes may be a yet poorly understood means to modulate their activity or function. The results also showed that metabolism of xylose affected the gene expression and abundance of proteins in pathways leading to acetyl-CoA synthesis and altered the metabolic fluxes in these pathways. Additionally, the analyses showed increased expression and abundance of several other genes and proteins involved in cellular redox reactions (e.g. aldo-ketoreductase Gcy1p and 6-phosphogluconate dehydrogenase) in cells grown on xylose. Metabolic flux analysis indicated increased NADPH-generating flux through the oxidative part of the pentose phosphate pathway in cells grown on xylose. The most importantly, results indicated that xylose was not able to repress to the same extent as glucose the genes of the tricarboxylic acid and glyoxylate cycles, gluconeogenesis and some other genes involved in the metabolism of respiratory carbon sources. This suggests that xylose is not recognised as a fully fermentative carbon source by the recombinant S. cerevisiae that may be one of the major reasons for the suboptimal fermentation of xylose. The regulatory network for carbon source recognition and catabolite repression is complex and its functions are only partly known. Consequently, multiple genetic modifications and also random approaches would probably be required if these pathways were to be modified for further improvement of xylose fermentation by recombinant S. cerevisiae strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Provision of modern energy services for cooking (with gaseous fuels)and lighting (with electricity) is an essential component of any policy aiming to address health, education or welfare issues; yet it gets little attention from policy-makers. Secure, adequate, low-cost energy of quality and convenience is core to the delivery of these services. The present study analyses the energy consumption pattern of Indian domestic sector and examines the urban-rural divide and income energy linkage. A comprehensive analysis is done to estimate the cost for providing modern energy services to everyone by 2030. A public-private partnership-driven business model, with entrepreneurship at the core, is developed with institutional, financing and pricing mechanisms for diffusion of energy services. This approach, termed as EMPOWERS (entrepreneurship model for provision of wholesome energy-related basic services), if adopted, can facilitate large-scale dissemination of energy-efficient and renewable technologies like small-scale biogas/biofuel plants, and distributed power generation technologies to provide clean, safe, reliable and sustainable energy to rural households and urban poor. It is expected to integrate the processes of market transformation and entrepreneurship development involving government, NGOs, financial institutions and community groups as stakeholders. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents a flexible and integrated planning tool for active distribution network to maximise the benefits of having high level s of renewables, customer engagement, and new technology implementations. The tool has two main processing parts: “optimisation” and “forecast”. The “optimization” part is an automated and integrated planning framework to optimize the net present value (NPV) of investment strategy for electric distribution network augmentation over large areas and long planning horizons (e.g. 5 to 20 years) based on a modified particle swarm optimization (MPSO). The “forecast” is a flexible agent-based framework to produce load duration curves (LDCs) of load forecasts for different levels of customer engagement, energy storage controls, and electric vehicles (EVs). In addition, “forecast” connects the existing databases of utility to the proposed tool as well as outputs the load profiles and network plan in Google Earth. This integrated tool enables different divisions within a utility to analyze their programs and options in a single platform using comprehensive information.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rural population of India constitutes about 70% of the total population and traditional fuels account for 75% of the rural energy needs. Depletion of woodlands coupled with the persistent dependency on fuel wood has posed a serious problem for household energy provision in many parts. This study highlights that the traditional fuels still meet 85-95% of fuel needs in rural areas of Kolar district: people prefer fuel wood for cooking and agriculture residues for water heating and other purposes. However, rapid changes in land cover and land use in recent times have affected these traditional fuels availability necessitating inventorying, mapping and monitoring of bioresources for sustainable management of bioresources. Remote sensing data (Multispectal and Panchromatic), Geographic Information System (GIS), field surveys and non-destructive sampling were used to assess spatially the availability and demand of energy. Field surveys indicate that rural household depends on species such as Prosopis juliflora, Acacia nilotica, Acacia auriculiformis to meet fuel wood requirement for domestic activities. Hence, to take stock of fuel wood availability, mapping was done at species level (with 88% accuracy) considering villages as sampling units using fused multispectral and panchromatic data. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane has garnered much interest for its potential as a viable renewable energy crop. While the use of sugar juice for ethanol production has been in practice for years, a new focus on using the fibrous co-product known as bagasse for producing renewable fuels and bio-based chemicals is growing in interest. The success of these efforts, and the development of new varieties of energy canes, could greatly increase the use of sugarcane and sugarcane biomass for fuels while enhancing industry sustainability and competitiveness. Sugarcane-Based Biofuels and Bioproducts examines the development of a suite of established and developing biofuels and other renewable products derived from sugarcane and sugarcane-based co-products, such as bagasse. Chapters provide broad-ranging coverage of sugarcane biology, biotechnological advances, and breakthroughs in production and processing techniques. This text brings together essential information regarding the development and utilization of new fuels and bioproducts derived from sugarcane. Authored by experts in the field, Sugarcane-Based Biofuels and Bioproducts is an invaluable resource for researchers studying biofuels, sugarcane, and plant biotechnology as well as sugar and biofuels industry personnel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the least known compounds among transition metal dichalcogenides (TMDCs) is the layered triclinic technetium dichalcogenides (TcX2, X = S, Se). In this work, we systematically study the structural, mechanical, electronic, and optical properties of TcS2 and TcSe2 monolayers based on density functional theory (DFT). We find that TcS2 and TcSe2 can be easily exfoliated in a monolayer form because their formation and cleavage energy are analogous to those of other experimentally realized TMDCs monolayer. By using a hybrid DFT functional, the TcS2 and TcSe2 monolayers are calculated to be indirect semiconductors with band gaps of 1.91 and 1.69 eV, respectively. However, bilayer TcS2 exhibits direct-bandgap character, and both TcS2 and TcSe2 monolayers can be tuned from semiconductor to metal under effective tensile/compressive strains. Calculations of visible light absorption indicate that 2D TcS2 and TcSe2 generally possess better capability of harvesting sunlight compared to single-layer MoS2 and ReSe2, implying their potential as excellent light-absorbers. Most interestingly, we have discovered that the TcSe2 monolayer is an excellent photocatalyst for splitting water into hydrogen due to the perfect fit of band edge positions with respect to the water reduction and oxidation potentials. Our predictions expand the two-dimensional (2D) family of TMDCs, and the remarkable electronic/optical properties of monolayer TcS2 and TcSe2 will place them among the most promising 2D TMDCs for renewable energy application in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigates the morphology, microstructure and surface composition of Diesel engine exhaust particles. The state of agglomeration, the primary particle size and the fractal dimension of exhaust particles from petroleum Diesel (petrodiesel) and biodiesel blends from microalgae, cotton seed and waste cooking oil were investigated by means of high resolution transmission electron microscopy. With primary particle diameters between 12-19 nm, biodiesel blend primary particles are found to be smaller than petrodiesel ones (21±2 nm). Also it was found that soot agglomerates from biodiesels are more compact and spherical, as their fractal dimensions are higher, e.g. 2.2±0.1 for 50% algae biodiesel compared to 1.7±0.1 for petrodiesel. In addition, analysis of the chemical composition by means of x-ray photoelectron spectroscopy revealed an up to a factor of two increased oxygen content on the primary particle surface for biodiesel. The length, curvature and distance of graphene layers were measured showing a greater structural disorder for biodiesel with shorter fringes of higher tortuosity. This change in carbon chemistry may reflect the higher oxygen content of biofuels. Overall, it seems that the oxygen content in the fuels is the underlying reason for the observed morphological change in the resulting soot particles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considered to be the next generation of heat transfer fluids, nanofluids have been receiving a growing amount of attention in the past decade despite the controversy and inconsistencies that have been reported. Nanofluids have great potential in a wide range of fields, particularly for solar thermal applications. This paper presents a comprehensive review of the literature on the enhancements in thermophysical and rheological properties resulting from experimental works conducted on molten salt nanofluids that are used in solar thermal energy systems. It was found that an increase in specific heat of 10–30% was achieved for most nanofluids and appeared independent of particle size and to an extent mass concentration. The specific heat increase was attributed to the formation of nanostructures at the solid–liquid interface and it was also noted that the aggregation of nanoparticles has detrimental effects on the specific heat increase. Thermal conductivity was also found to increase, though less consistently, ranging from 3% to 35%. Viscosity was seen to increase with the addition of nanoparticles and is dependent on the amount of aggregation of the particles. An in-depth micro level analysis of the mechanisms behind the thermophysical property changes is presented in this paper. In addition, possible trends are discussed relating to current theorised mechanisms in an attempt to explain the behaviour of molten salt nanofluids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The drying of fruit and vegetables is a subject of great importance. Dried fruit and vegetables have gained commercial importance, and their growth on a commercial scale has become an important sector of the agricultural industry. However, food drying is one of the most energy intensive processes of the major industrial process and accounts for up to 15 % of all industrial energy usage. Due to increasingly high electricity prices and environmental concern, a dryer using traditional energy sources is not a feasible option anymore. Therefore, an alternative/renewable energy source is needed. In this regard, an integrated solar drying system that includes highly efficient double-pass counter flow v-groove solar collector, conical-shaped rock-bed thermal storage, auxiliary heater, the centrifugal fan and the drying chamber has been designed and constructed. Mathematical model for all the individual components as well as an integrated model combining all components of the drying system has been developed. Mathematical equations were solved using MATLAB program. This paper presents the analytical model and key finding of the simulation.