972 resultados para Relativistic dissipative hydrodynamics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent astronomical observations (involving supernovae type Ia, cosmic background radiation anisotropy and galaxy clusters probes) have provided strong evidence that the observed universe is described by an accelerating, flat model whose space-time properties can be represented by the FriedmannRobertsonWalker (FRW) metric. However, the nature of the substance or mechanism behind the current cosmic acceleration remains unknown and its determination constitutes a challenging problem for modern cosmology. In the general relativistic description, an accelerat ing regime is usually obtained by assuming the existence of an exotic energy component endowed with negative pressure, called dark energy, which is usually represented by a cosmological constant ¤ associated to the vacuum energy density. All observational data available so far are in good agreement with the concordance cosmic ¤CDM model. Nevertheless, such models are plagued with several problems thereby inspiring many authors to propose alternative candidates in the relativistic context. In this thesis, a new kind of accelerating flat model with no dark energy and fully dominated by cold dark matter (CDM) is proposed. The number of CDM particles is not conserved and the present accelerating stage is a consequence of the negative pressure describing the irreversible process of gravitational particle creation. In order to have a transition from a decelerating to an accelerating regime at low redshifts, the matter creation rate proposed here depends on 2 parameters (y and ߯): the first one identifies a constant term of the order of H0 and the second one describes a time variation proportional to he Hubble parameter H(t). In this scenario, H0 does not need to be small in order to solve the age problem and the transition happens even if there is no matter creation during the radiation and part of the matter dominated phase (when the ß term is negligible). Like in flat ACDM scenarios, the dimming of distant type Ia supernovae can be fitted with just one free parameter, and the coincidence problem plaguing the models driven by the cosmological constant. ACDM is absent. The limits endowed with with the existence of the quasar APM 08279+5255, located at z = 3:91 and with an estimated ages between 2 and 3 Gyr are also investigated. In the simplest case (ß = 0), the model is compatible with the existence of the quasar for y > 0:56 whether the age of the quasar is 2.0 Gyr. For 3 Gyr the limit derived is y > 0:72. New limits for the formation redshift of the quasar are also established

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the cosmology of the vacuum energy decaying into cold dark matter according to thermodynamics description of Alcaniz & Lima. We apply this model to analyze the evolution of primordial density perturbations in the matter that gave rise to the first generation of structures bounded by gravity in the Universe, called Population III Objects. The analysis of the dynamics of those systems will involve the calculation of a differential equation system governing the evolution of perturbations to the case of two coupled fluids (dark matter and baryonic matter), modeled with a Top-Hat profile based in the perturbation of the hydrodynamics equations, an efficient analytical tool to study the properties of dark energy models such as the behavior of the linear growth factor and the linear growth index, physical quantities closely related to the fields of peculiar velocities at any time, for different models of dark energy. The properties and the dynamics of current Universe are analyzed through the exact analytical form of the linear growth factor of density fluctuations, taking into account the influence of several physical cooling mechanisms acting on the density fluctuations of the baryonic component of matter during the evolution of the clouds of matter, studied from the primordial hydrogen recombination. This study is naturally extended to more general models of dark energy with constant equation of state parameter in a flat Universe

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The recent astronomical observations indicate that the universe has null spatial curvature, is accelerating and its matter-energy content is composed by circa 30% of matter (baryons + dark matter) and 70% of dark energy, a relativistic component with negative pressure. However, in order to built more realistic models it is necessary to consider the evolution of small density perturbations for explaining the richness of observed structures in the scale of galaxies and clusters of galaxies. The structure formation process was pioneering described by Press and Schechter (PS) in 1974, by means of the galaxy cluster mass function. The PS formalism establishes a Gaussian distribution for the primordial density perturbation field. Besides a serious normalization problem, such an approach does not explain the recent cluster X-ray data, and it is also in disagreement with the most up-to-date computational simulations. In this thesis, we discuss several applications of the nonextensive q-statistics (non-Gaussian), proposed in 1988 by C. Tsallis, with special emphasis in the cosmological process of the large structure formation. Initially, we investigate the statistics of the primordial fluctuation field of the density contrast, since the most recent data from the Wilkinson Microwave Anisotropy Probe (WMAP) indicates a deviation from gaussianity. We assume that such deviations may be described by the nonextensive statistics, because it reduces to the Gaussian distribution in the limit of the free parameter q = 1, thereby allowing a direct comparison with the standard theory. We study its application for a galaxy cluster catalog based on the ROSAT All-Sky Survey (hereafter HIFLUGCS). We conclude that the standard Gaussian model applied to HIFLUGCS does not agree with the most recent data independently obtained by WMAP. Using the nonextensive statistics, we obtain values much more aligned with WMAP results. We also demonstrate that the Burr distribution corrects the normalization problem. The cluster mass function formalism was also investigated in the presence of the dark energy. In this case, constraints over several cosmic parameters was also obtained. The nonextensive statistics was implemented yet in 2 distinct problems: (i) the plasma probe and (ii) in the Bremsstrahlung radiation description (the primary radiation from X-ray clusters); a problem of considerable interest in astrophysics. In another line of development, by using supernova data and the gas mass fraction from galaxy clusters, we discuss a redshift variation of the equation of state parameter, by considering two distinct expansions. An interesting aspect of this work is that the results do not need a prior in the mass parameter, as usually occurs in analyzes involving only supernovae data.Finally, we obtain a new estimate of the Hubble parameter, through a joint analysis involving the Sunyaev-Zeldovich effect (SZE), the X-ray data from galaxy clusters and the baryon acoustic oscillations. We show that the degeneracy of the observational data with respect to the mass parameter is broken when the signature of the baryon acoustic oscillations as given by the Sloan Digital Sky Survey (SDSS) catalog is considered. Our analysis, based on the SZE/X-ray data for a sample of 25 galaxy clusters with triaxial morphology, yields a Hubble parameter in good agreement with the independent studies, provided by the Hubble Space Telescope project and the recent estimates of the WMAP

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new procedure to construct the one-dimensional non-Hermitian imaginary potential with a real energy spectrum in the context of the position-dependent effective mass Dirac equation with the vector-coupling scheme in 1 + 1 dimensions. In the first example, we consider a case for which the mass distribution combines linear and inversely linear forms, the Dirac problem with a PT-symmetric potential is mapped into the exactly solvable Schrodinger-like equation problem with the isotonic oscillator by using the local scaling of the wavefunction. In the second example, we take a mass distribution with smooth step shape, the Dirac problem with a non-PT-symmetric imaginary potential is mapped into the exactly solvable Schrodinger-like equation problem with the Rosen-Morse potential. The real relativistic energy levels and corresponding wavefunctions for the bound states are obtained in terms of the supersymmetric quantum mechanics approach and the function analysis method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Dirac equation is analyzed for nonconserving-parity pseudoscalar radial potentials in 3+1 dimensions. It is shown that despite the nonconservation of parity this general problem can be reduced to a Sturm-Liouville problem of nonrelativistic fermions in spherically symmetric effective potentials. The searching for bounded solutions is done for the power-law and Yukawa potentials. The use of the methodology of effective potentials allow us to conclude that the existence of bound-state solutions depends whether the potential leads to a definite effective potential-well structure or to an effective potential less singular than -1/4r(2).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exact bounded solutions for a fermion subject to exponential scalar potential in 1 + 1 dimensions are found in closed form. We discuss the existence of zero modes which are related to the ultrarelativistic limit of the Dirac equation and are responsible for the induction of a fractional fermion number on the vacuum.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intrinsically relativistic problem of a fermion subject to a pseudoscalar screened Coulomb plus a uniform background potential in two-dimensional space-time is mapped into a Sturm-Liouville. This mapping gives rise to an effective Morse-like potential and exact bounded solutions are found. It is shown that the uniform background potential determinates the number of bound-state solutions. The behaviour of the eigenenergies as well as of the upper and lower components of the Dirac spinor corresponding to bounded solutions is discussed in detail and some unusual results are revealed. An apparent paradox concerning the uncertainty principle is solved by recurring to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of a fermion subject to a a scalar inversely linear potential in a two-dimensional world is mapped into a Sturm-Liouville problem for nonzero eigenenergies. This mapping gives rise to an effective Kratzer potential and exact bounded solutions are found in closed form. The normalizable zero-eigenmode solution is also found. A few unusual results are revealed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of a fermion subject to a general scalar potential in a two-dimensional world for nonzero eigenenergies is mapped into a Sturm-Liouville problem for the upper component of the Dirac spinor. In the specific circumstance of an exponential potential, we have an effective Morse potential which reveals itself as an essentially relativistic problem. Exact bound solutions are found in closed form for this problem. The behaviour of the upper and lower components of the Dirac spinor is discussed in detail, particularly the existence of zero modes. (c) 2005 Elsevier B.v. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intrinsically relativistic problem of neutral fermions subject to kink-like potentials (similar to tanh gamma x) is investigated and the exact bound-state solutions are found. Apart from the lonely hump solutions for E = +/- mc(2), the problem is mapped into the exactly solvable Sturm-Liouville problem with a modified Poschl-Teller potential. An apparent paradox concerning the uncertainty principle is solved by resorting to the concepts of effective mass and effective Compton wavelength. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a new method to construct the exactly solvable PT-symmetric potentials within the framework of the position-dependent effective mass Dirac equation with the vector potential coupling scheme in 1 + 1 dimensions. In order to illustrate the procedure, we produce three PT-symmetric potentials as examples, which are PT-symmetric harmonic oscillator-like potential, PT-symmetric potential with the form of a linear potential plus an inversely linear potential, and PT-symmetric kink-like potential, respectively. The real relativistic energy levels and corresponding spinor components for the bound states are obtained by using the basic concepts of the supersymmetric quantum mechanics formalism and function analysis method. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Klein - Gordon and the Dirac equations with vector and scalar potentials are investigated under a more general condition, V(v) + V(s) = constant. These intrinsically relativistic and isospectral problems are solved in the case of squared hyperbolic potential functions and bound states for either particles or antiparticles are found. The eigenvalues and eigenfuntions are discussed in some detail and the effective Compton wavelength is revealed to be an important physical quantity. It is revealed that a boson is better localized than a fermion when they have the same mass and are subjected to the same potentials.